Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mirror symmetry“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mirror symmetry" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mirror symmetry"
Ma, Zhi Yong. „Research on Concept System of Rotation-Mirror Symmetry in Mechanical Systems“. Applied Mechanics and Materials 201-202 (Oktober 2012): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amm.201-202.7.
Der volle Inhalt der QuelleTakahashi, Nobuyoshi. „Log Mirror Symmetry and Local Mirror Symmetry“. Communications in Mathematical Physics 220, Nr. 2 (Juli 2001): 293–99. http://dx.doi.org/10.1007/pl00005567.
Der volle Inhalt der QuelleBlumenhagen, Ralph, Rolf Schimmrigk und Andreas Wiβkirchen. „(0,2) Mirror symmetry“. Nuclear Physics B 486, Nr. 3 (Februar 1997): 598–628. http://dx.doi.org/10.1016/s0550-3213(96)00698-0.
Der volle Inhalt der QuelleGross, Mark. „Topological mirror symmetry“. Inventiones mathematicae 144, Nr. 1 (April 2001): 75–137. http://dx.doi.org/10.1007/s002220000119.
Der volle Inhalt der QuelleWan, Daqing. „Arithmetic Mirror Symmetry“. Pure and Applied Mathematics Quarterly 1, Nr. 2 (2005): 369–78. http://dx.doi.org/10.4310/pamq.2005.v1.n2.a7.
Der volle Inhalt der QuelleZhang, Jun, und Gabriel Khan. „Statistical mirror symmetry“. Differential Geometry and its Applications 73 (Dezember 2020): 101678. http://dx.doi.org/10.1016/j.difgeo.2020.101678.
Der volle Inhalt der QuelleMa, Zhi Yong. „Research on Concept System of Mechanical Glide Symmetry“. Applied Mechanics and Materials 151 (Januar 2012): 433–37. http://dx.doi.org/10.4028/www.scientific.net/amm.151.433.
Der volle Inhalt der QuelleMELKEMI, MAHMOUD, FREDERIC CORDIER und NICKOLAS S. SAPIDIS. „A PROVABLE ALGORITHM TO DETECT WEAK SYMMETRY IN A POLYGON“. International Journal of Image and Graphics 13, Nr. 01 (Januar 2013): 1350002. http://dx.doi.org/10.1142/s0219467813500022.
Der volle Inhalt der QuelleGiveon, Amit, und Edward Witten. „Mirror symmetry as a gauge symmetry“. Physics Letters B 332, Nr. 1-2 (Juli 1994): 44–50. http://dx.doi.org/10.1016/0370-2693(94)90856-7.
Der volle Inhalt der QuelleDUNDEE, B., J. PERKINS und G. CLEAVER. „OBSERVABLE/HIDDEN SECTOR BROKEN SYMMETRY FOR SYMMETRIC BOUNDARY CONDITIONS“. International Journal of Modern Physics A 21, Nr. 16 (30.06.2006): 3367–85. http://dx.doi.org/10.1142/s0217751x06031090.
Der volle Inhalt der QuelleDissertationen zum Thema "Mirror symmetry"
Branco, Lucas Castello. „Higgs bundles, Lagrangians and mirror symmetry“. Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:612325bd-6a7f-4d74-a85c-426b73ff7a14.
Der volle Inhalt der QuelleMertens, Adrian. „Mirror Symmetry in the presence of Branes“. Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-135464.
Der volle Inhalt der QuelleGu, Wei. „Gauged Linear Sigma Model and Mirror Symmetry“. Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90892.
Der volle Inhalt der QuelleDoctor of Philosophy
In this thesis, I summarize my work on gauged linear sigma models (GLSMs) and mirror symmetry. We begin by using supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding A-twisted GLSM correlation functions for hypersurfaces. We also define associated Cartan theories for non-abelian GLSMs. We then consider N =(0,2) GLSMs. For those deformed from N =(2,2) GLSMs, we consider A/2-twisted theories and formulate the genus-zero correlation functions on Coulomb branches. We reproduce known results for abelian GLSMs, and can systematically compute more examples with new formulas that render the quantum sheaf cohomology relations and other properties are manifest. We also include unpublished results for counting deformation parameters. We then turn to mirror symmetry, a duality between seemingly-different two-dimensional quantum field theories. We propose an extension of the Hori-Vafa mirror construction [25] from abelian (2,2) GLSMs to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. We then propose an extension of the HoriVafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples. We conclude with a discussion of directions that we would like to pursue in the future.
Perevalov, Eugene V. „Type II/heterotic duality and mirror symmetry /“. Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Der volle Inhalt der QuelleRossi, Paolo. „Symplectic Topology, Mirror Symmetry and Integrable Systems“. Doctoral thesis, SISSA, 2008. http://hdl.handle.net/11577/3288900.
Der volle Inhalt der QuelleKrefl, Daniel. „Real Mirror Symmetry and The Real Topological String“. Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-102832.
Der volle Inhalt der QuelleWilliams, Matthew Michael. „Mirror Symmetry for Non-Abelian Landau-Ginzburg Models“. BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8560.
Der volle Inhalt der QuelleUeda, Kazushi. „Homological mirror symmetry for toric del Pezzo surfaces“. 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144153.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(理学)
甲第12069号
理博第2963号
新制||理||1443(附属図書館)
23905
UT51-2006-J64
京都大学大学院理学研究科数学・数理解析専攻
(主査)助教授 河合 俊哉, 教授 齋藤 恭司, 教授 柏原 正樹
学位規則第4条第1項該当
Kadir, Shabnam Nargis. „The arithmetic of Calabi-Yau manifolds and mirror symmetry“. Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403756.
Der volle Inhalt der QuellePetracci, Andrea. „On Mirror Symmetry for Fano varieties and for singularities“. Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55877.
Der volle Inhalt der QuelleBücher zum Thema "Mirror symmetry"
Mirror symmetry. Providence, RI: American Mathematical Society, 1999.
Den vollen Inhalt der Quelle findenKentaro, Hori, Hrsg. Mirror symmetry. Providence, RI: American Mathematical Society, 2003.
Den vollen Inhalt der Quelle findenJinzenji, Masao. Classical Mirror Symmetry. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1.
Der volle Inhalt der Quelle1963-, Greene B., und Yau Shing-Tung 1949-, Hrsg. Mirror symmetry II. Providence, RI: American Mathematical Society, 1997.
Den vollen Inhalt der Quelle finden1949-, Yau Shing-Tung, Hrsg. Mirror symmetry I. Providence, RI: American Mathematical Society, 1998.
Den vollen Inhalt der Quelle findenCastaño-Bernard, Ricardo, Yan Soibelman und Ilia Zharkov, Hrsg. Mirror Symmetry and Tropical Geometry. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/conm/527.
Der volle Inhalt der QuelleCox, David A. Mirror symmetry and algebraic geometry. Providence, R.I: American Mathematical Society, 1999.
Den vollen Inhalt der Quelle finden1964-, Aspinwall Paul, Hrsg. Dirichlet branes and mirror symmetry. Providence, R.I: American Mathematical Society, 2009.
Den vollen Inhalt der Quelle findenReality's mirror: Exploring the mathematics of symmetry. New York: Wiley, 1989.
Den vollen Inhalt der Quelle findenConference on Complex Geometry and Mirror Symmetry (1995 Montréal, Québec). Mirror symmetry III: Proceedings of the Conference on Complex Geometry and Mirror Symmetry, Montréal, 1995. Herausgegeben von Phong Duong H. 1953-, Vinet Luc und Yau Shing-Tung 1949-. Providence, R.I: American Mathematical Society, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Mirror symmetry"
Berman, David, Hugo Garcia-Compean, Paulius Miškinis, Miao Li, Daniele Oriti, Steven Duplij, Steven Duplij et al. „Mirror Symmetry“. In Concise Encyclopedia of Supersymmetry, 241. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_320.
Der volle Inhalt der QuelleTalpo, Mattia. „Batyrev Mirror Symmetry“. In Springer Proceedings in Mathematics & Statistics, 103–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91626-2_9.
Der volle Inhalt der QuelleCox, David, und Sheldon Katz. „Mirror symmetry constructions“. In Mathematical Surveys and Monographs, 53–72. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/surv/068/04.
Der volle Inhalt der QuelleClader, Emily, und Yongbin Ruan. „Mirror Symmetry Constructions“. In B-Model Gromov-Witten Theory, 1–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94220-9_1.
Der volle Inhalt der QuelleJinzenji, Masao. „Brief History of Classical Mirror Symmetry“. In Classical Mirror Symmetry, 1–26. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_1.
Der volle Inhalt der QuelleJinzenji, Masao. „Basics of Geometry of Complex Manifolds“. In Classical Mirror Symmetry, 27–53. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_2.
Der volle Inhalt der QuelleJinzenji, Masao. „Topological Sigma Models“. In Classical Mirror Symmetry, 55–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_3.
Der volle Inhalt der QuelleJinzenji, Masao. „Details of B-Model Computation“. In Classical Mirror Symmetry, 83–108. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_4.
Der volle Inhalt der QuelleJinzenji, Masao. „Reconstruction of Mirror Symmetry Hypothesis from a Geometrical Point of View“. In Classical Mirror Symmetry, 109–40. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_5.
Der volle Inhalt der Quelle„Mirror Symmetry“. In Visual Symmetry, 5–30. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835321_0001.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mirror symmetry"
Ge, Li. „Complex Mirror Symmetry in Optics“. In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.51.
Der volle Inhalt der QuelleHACKING, PAUL, und SEAN KEEL. „MIRROR SYMMETRY AND CLUSTER ALGEBRAS“. In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0073.
Der volle Inhalt der QuelleThomas, Richard P. „An Exercise in Mirror Symmetry“. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0067.
Der volle Inhalt der QuelleDE LA OSSA, XENIA. „CALABI-YAU MANIFOLDS AND MIRROR SYMMETRY“. In Proceedings of the Tenth General Meeting. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704276_0009.
Der volle Inhalt der QuelleLenzi, Silvia, und Rita Lau. „Mirror (a)symmetry far from stability“. In 10th Latin American Symposium on Nuclear Physics and Applications. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.194.0035.
Der volle Inhalt der QuelleKONTSEVICH, MAXIM, und YAN SOIBELMAN. „HOMOLOGICAL MIRROR SYMMETRY AND TORUS FIBRATIONS“. In Proceedings of the 4th KIAS Annual International Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799821_0007.
Der volle Inhalt der QuelleKatzarkov, Ludmil. „Birational geometry and homological mirror symmetry“. In Proceedings of the Australian-Japanese Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706898_0008.
Der volle Inhalt der QuelleNahm, Werner. „Mirror symmetry and self-duality equations“. In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0023.
Der volle Inhalt der QuelleMestetskiy, L., und A. Zhuravskaya. „Mirror Symmetry Detection in Digital Images“. In 15th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008976003310337.
Der volle Inhalt der QuelleBeradze, Revaz, und Merab Gogberashvili. „LIGO signals from mirror world“. In RDP online PhD school and workshop "Aspects of Symmetry". Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.412.0029.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Mirror symmetry"
Kachru, Shamit. Mirror Symmetry for Open Strings. Office of Scientific and Technical Information (OSTI), Juni 2000. http://dx.doi.org/10.2172/763790.
Der volle Inhalt der QuelleSin, Sang-Jin. Chiral Rings, Mirror Symmetry and the Fate of Localized Tachyons. Office of Scientific and Technical Information (OSTI), März 2003. http://dx.doi.org/10.2172/812956.
Der volle Inhalt der QuelleChuang, W. A Note on Mirror Symmetry for Manifolds with Spin(7) Holonomy. Office of Scientific and Technical Information (OSTI), Juni 2004. http://dx.doi.org/10.2172/827006.
Der volle Inhalt der QuelleHua, D., und T. Fowler. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code. Office of Scientific and Technical Information (OSTI), Juni 2004. http://dx.doi.org/10.2172/15014290.
Der volle Inhalt der Quelle