Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Mineralogy.

Zeitschriftenartikel zum Thema „Mineralogy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Mineralogy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Hoppe, G. „Zur Geschichte der Geowissenschaften im Museum für Naturkunde zu Berlin Teil 4: Das Mineralogische Museum der Universität Berlin unter Christian Samuel Weiss von 1810 bis 1856“. Fossil Record 4, Nr. 1 (01.01.2001): 3–27. http://dx.doi.org/10.5194/fr-4-3-2001.

Der volle Inhalt der Quelle
Annotation:
Die Universitätsgründung in Berlin von 1810 war verbunden mit der Übernahme des Lehrbetriebes der aufgelösten Bergakademie, die nur noch in Form des Bergeleveninstituts bzw. Bergelevenklasse für die Finanzierung der Ausbildung der Bergeleven weiter bestand, sowie mit der Übernahme des von der Bergakademie genutzten Königlichen Mineralienkabinetts der preußischen Bergverwaltung als Mineralogisches Museum der Universität. Infolge des Todes von D. L. G. Karsten im Jahre 1810 erhielt der Leipziger Physiker und Mineraloge C. S. Weiss den Lehrstuhl für Mineralogie, den er bis zu seinem Tode 1856 innehatte. Weiss entwickelte die Lehre Werners, die die Mineralogie einschließlich Geologie umfasste, in kristallographischer Hinsicht weiter, während sich später neben ihm zwei seiner Schüler anderen Teilgebieten der Mineralogie annahmen, G. Rose der speziellen Mineralogie und E. Beyrich der geologischen Paläontologie. Der Ausbau der Sammlungen durch eigene Aufsammlungen, Schenkungen und Käufe konnte in starkem Maße fortgesetzt werden, auch zunehmend in paläontologischer Hinsicht, sodass das Mineralogische Museum für das ganze Spektrum der Lehre gut bestückt war. Der streitbare Charakter von Weiss verursachte zahlreiche Reibungspunkte. <br><br> History of the Geoscience Institutes of the Natural History Museum in Berlin. Part 4 <br><br> The establishment of the University in Berlin in 1810 resulted in the adoption of the teaching of the dissolved Bergakademie and of the royal Mineralienkabinett of the Prussian mining department, which was used by the Bergakademie before it became the Mineralogical Museum of the University. The Bergakademie continued to exist only as Bergeleveninstitut or Bergelevenklasse for financing the education of the mining students. The physicist and mineralogist C. S. Weiss was offered the chair of mineralogy after the death of D. L. G. Karsten 1810; he had the position to his death in 1856. Weiss developped the crystallographic part of the science of Werner which included mineralogy and geology. Two of his pupils progressed two other parts of mineralogy, G. Rose the speciel mineralogy and E. Beyrich the geological paleontology. The enlargement of the collections continued on large scale by own collecting, donations and purchases, also more paleontological objects, so that the Mineralogical Museum presented a good collection of the whole spectrum of the field. The pugnacious nature of Weiss resulted in many points of friction. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.20010040102" target="_blank">10.1002/mmng.20010040102</a>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Valsami-Jones, E., D. A. Polya und K. Hudson-Edwards. „Environmental mineralogy, geochemistry and human health“. Mineralogical Magazine 69, Nr. 5 (Oktober 2005): 615–20. http://dx.doi.org/10.1180/s0026461x00045473.

Der volle Inhalt der Quelle
Annotation:
This issue of Mineralogical Magazine is the 5th in a loosely defined series of special thematic issues (or part issues), deriving from conferences organized by the Mineralogical Society. The associated conference was entitled ‘Environmental Mineralogy, Geochemistry and Human Health’ and took place in January 2005, in Bath. A common thread to all these Mineralogical Society conferences has been the role of mineralogy in applied science and technology and particularly in environmental science, focussing on the multidisciplinarity of modern mineralogy; the conferences (and special issues) have been particularly successful in bringing along scientists from outside traditional Mineralogy/Earth Sciences. Notably, the series comes at a time when the popularity of Mineralogy/Geology, but also science in general, is low, and many, particularly young, scientists are seeking to place themselves in a better position in the eye of the public and the media, and often also to find new focus for their research. A primary ambition for the series is thus to demonstrate Mineralogy's extensive outreach and has so far succeeded in giving the scientific community a sense of the wider role mineralogists can play.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Graham, Shaun, und Nynke Keulen. „Nanoscale Automated Quantitative Mineralogy: A 200-nm Quantitative Mineralogy Assessment of Fault Gouge Using Mineralogic“. Minerals 9, Nr. 11 (29.10.2019): 665. http://dx.doi.org/10.3390/min9110665.

Der volle Inhalt der Quelle
Annotation:
Effective energy-dispersive X-ray spectroscopy analysis (EDX) with a scanning electron microscope of fine-grained materials (submicrometer scale) is hampered by the interaction volume of the primary electron beam, whose diameter usually is larger than the size of the grains to be analyzed. Therefore, mixed signals of the chemistry of individual grains are expected, and EDX is commonly not applied to such fine-grained material. However, by applying a low primary beam acceleration voltage, combined with a large aperture, and a dedicated mineral classification in the mineral library employed by the Zeiss Mineralogic software platform, mixed signals could be deconvoluted down to a size of 200 nm. In this way, EDX and automated quantitative mineralogy can be applied to investigations of submicrometer-sized grains. It is shown here that reliable quantitative mineralogy and grain size distribution assessment can be made based on an example of fault gouge with a heterogenous mineralogy collected from Ikkattup nunaa Island, southern West Greenland.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kokkaliari, Maria, und Ioannis Iliopoulos. „Application of Near-Infrared Spectroscopy for the identification of rock mineralogy from Kos Island, Aegean Sea, Greece“. Bulletin of the Geological Society of Greece 55, Nr. 1 (03.01.2020): 290. http://dx.doi.org/10.12681/bgsg.20708.

Der volle Inhalt der Quelle
Annotation:
Near-Infrared spectroscopy (NIR) is a useful tool for direct and on-site identification of rock mineralogy in spite of the difficulties arising in spectral evaluation, due to limited availability of spectral libraries at the time. Especially in the field, a functional methodology for the identification and evaluation if possible, of the geologic materials, is of interest to many researchers. However, several different parameters (such as grain size, color, mineralogy, texture, water content etc.) can affect the spectroscopic properties of the samples resulting in spectral variability. The subject of the present work focuses in various lithotypes (monzodiorite, diorite, altered diorite, actinolite schist, cataclasite, slate) from Kos Island, Aegean Sea, in Greece, all bearing hydrous minerals in various amounts. The evaluation of the results obtained from NIR spectroscopy offered important qualitative information about the mineralogy of the lithotypes examined. The important asset of the method is that no sample preparation was necessary. From the reflectance spectra, the NIR-active minerals that were identified include chlorite, micas, amphiboles and epidotes. Petrographic and mineralogic analyses were also employed in order to confirm the NIR results and provide more detailed information about the mineralogy of the samples, the grain size and the orientation of the minerals. Correlation of wavelength positions at ~1400 nm with loss on ignition (LOI) values led us to relate the various lithotypes in terms of their petrological affinities. NIR spectroscopy was proved to be a useful tool, especially for the mineralogic identification of rocks underwent low- to medium grade metamorphism, from greenschist to amphibolite facies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gutmann, J. „Mineralogy“. Eos, Transactions American Geophysical Union 79, Nr. 27 (1998): 320. http://dx.doi.org/10.1029/98eo00242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Naldrett, A. J. „Mineralogy is alive“. European Journal of Mineralogy 12, Nr. 1 (07.02.2000): 5–6. http://dx.doi.org/10.1127/ejm/12/1/0005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dunham, A. C. „Developments in industrial mineralogy: II. Archaeological mineralogy“. Proceedings of the Yorkshire Geological Society 49, Nr. 2 (November 1992): 105–15. http://dx.doi.org/10.1144/pygs.49.2.105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Okrusch, Martin, und Hans Ulrich Bambauer. „From the Fortschritte der Mineralogie to the European Journal of Mineralogy: a case history“. European Journal of Mineralogy 22, Nr. 6 (23.12.2010): 897–908. http://dx.doi.org/10.1127/0935-1221/2010/0022-2047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rakovan, John. „Environmental Mineralogy“. Rocks & Minerals 83, Nr. 2 (März 2008): 172–75. http://dx.doi.org/10.3200/rmin.83.2.172-175.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

MATSUBARA, Satoshi. „Descriptive Mineralogy.“ Japanese Magazine of Mineralogical and Petrological Sciences 32, Nr. 3 (2003): 126–27. http://dx.doi.org/10.2465/gkk.32.126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Kotova, O. B., und A. V. Ponaryadov. „Nanotechnological mineralogy“. Journal of Mining Science 45, Nr. 1 (Januar 2009): 93–98. http://dx.doi.org/10.1007/s10913-009-0012-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Bain, D. C. „Optical mineralogy“. Earth-Science Reviews 24, Nr. 4 (Oktober 1987): 284–85. http://dx.doi.org/10.1016/0012-8252(87)90068-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Pernklau, Ernst. „Optical mineralogy“. Chemical Geology 56, Nr. 3-4 (Oktober 1986): 335. http://dx.doi.org/10.1016/0009-2541(86)90013-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Putirka, Keith D. „Exoplanet Mineralogy“. Reviews in Mineralogy and Geochemistry 90, Nr. 1 (01.07.2024): 199–257. http://dx.doi.org/10.2138/rmg.2024.90.07.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

van Hullebusch, Eric, und Stephanie Rossano. „Mineralogy, environment and health“. European Journal of Mineralogy 22, Nr. 5 (02.11.2010): 627. http://dx.doi.org/10.1127/0935-1221/2010/0022-2064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Fang, Qian, Hanlie Hong, Lulu Zhao, Stephanie Kukolich, Ke Yin und Chaowen Wang. „Visible and Near-Infrared Reflectance Spectroscopy for Investigating Soil Mineralogy: A Review“. Journal of Spectroscopy 2018 (2018): 1–14. http://dx.doi.org/10.1155/2018/3168974.

Der volle Inhalt der Quelle
Annotation:
Clay minerals are the most reactive and important inorganic components in soils, but soil mineralogy classifies as a minor topic in soil sciences. Revisiting soil mineralogy has been gradually required. Clay minerals in soils are more complex and less well crystallized than those in sedimentary rocks, and thus, they display more complicated X-ray diffraction (XRD) patterns. Traditional characterization methods such as XRD are usually expensive and time-consuming, and they are therefore inappropriate for large datasets, whereas visible and near-infrared reflectance spectroscopy (VNIR) is a quick, cost-efficient, and nondestructive technique for analyzing soil mineralogic properties of large datasets. The main objectives of this review are to bring readers up to date with information and understanding of VNIR as it relates to soil mineralogy and attracts more attention from a wide variety of readers to revisit soil mineralogy. We begin our review with a description of fundamentals of VNIR. We then review common methods to process soil VNIR spectra and summary spectral features of soil minerals with particular attention to those <2 μm fractions. We further critically review applications of chemometric methods and related model building in spectroscopic soil mineral studies. We then compare spectral measurement with multivariate calibration methods, and we suggest that they both produce excellent results depending on the situation. Finally, we suggest a few avenues of future research, including the development of theoretical calibrations of VNIR more suitable for various soil samples worldwide, better elucidation of clay mineral-soil organic carbon (SOC) interactions, and building the concept of integrated soil mapping through combined information (e.g., mineral composition, soil organic matter-SOM, SOC, pH, and moisture).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Escolme, Angela, Ron F. Berry, Julie Hunt, Scott Halley und Warren Potma. „Predictive Models of Mineralogy from Whole-Rock Assay Data: Case Study from the Productora Cu-Au-Mo Deposit, Chile“. Economic Geology 114, Nr. 8 (01.12.2019): 1513–42. http://dx.doi.org/10.5382/econgeo.2019.4650.

Der volle Inhalt der Quelle
Annotation:
Abstract Mineralogy is a fundamental characteristic of a given rock mass throughout the mining value chain. Understanding bulk mineralogy is critical when making predictions on processing performance. However, current methods for estimating complex bulk mineralogy are typically slow and expensive. Whole-rock geochemical data can be utilized to estimate bulk mineralogy using a combination of ternary diagrams and bivariate plots to classify alteration assemblages (alteration mapping), a qualitative approach, or through calculated mineralogy, a predictive quantitative approach. Both these techniques were tested using a data set of multielement geochemistry and mineralogy measured by semiquantitative X-ray diffraction data from the Productora Cu-Au-Mo deposit, Chile. Using geochemistry, samples from Productora were classified into populations based on their dominant alteration assemblage, including quartz-rich, Fe oxide, sodic, potassic, muscovite (sericite)- and clay-alteration, and least altered populations. Samples were also classified by their dominant sulfide mineralogy. Results indicate that alteration mapping through a range of graphical plots provides a rapid and simple appraisal of dominant mineral assemblage, which closely matches the measured mineralogy. In this study, calculated mineralogy using linear programming was also used to generate robust quantitative estimates for major mineral phases, including quartz and total feldspars as well as pyrite, iron oxides, chalcopyrite, and molybdenite, which matched the measured mineralogy data extremely well (R2 values greater than 0.78, low to moderate root mean square error). The results demonstrate that calculated mineralogy can be applied in the mining environment to significantly increase bulk mineralogy data and quantitatively map mineralogical variability. This was useful even though several minerals were challenging to model due to compositional similarities and clays and carbonates could not be predicted accurately.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Shchiptsov, V. V. „Technological mineralogy: from Academician V. M. Severgin to the present day“. Vestnik of Geosciences 4 (2021): 20–24. http://dx.doi.org/10.19110/geov.2021.4.3.

Der volle Inhalt der Quelle
Annotation:
It is shown that the origins of technological mineralogy in Russia are associated with the name of Academician V. M. Severgin, who at the end of the 18th century introduced the concept of «technological and economic» mineralogy. The stage of development of 1921—1955 is considered as important for the formation of the school of applied mineralogy. The next stage is the implementation of the principles of technological mineralogy in the practice of geological exploration and mining production and the creation of the Technological Mineralogy Commission of the All-Union Mineralogical Society by the beginning of 1983. The main directions of the development of technological mineralogy and the role of the published works of the commission are substantiated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Paykov, Oksana, und Harmonie Hawley. „Property-based assessment of soil mineralogy using mineralogy charts“. Applied Clay Science 104 (Februar 2015): 261–68. http://dx.doi.org/10.1016/j.clay.2014.12.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Passaglia, Elio, und Ermanno Galli. „Natural zeolites: mineralogy and applications“. European Journal of Mineralogy 3, Nr. 4 (27.08.1991): 637–40. http://dx.doi.org/10.1127/ejm/3/4/0637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Artioli, Gilberto, und Ivana Angelini. „Mineralogy and archaeometry: fatal attraction“. European Journal of Mineralogy 23, Nr. 6 (21.12.2011): 849–55. http://dx.doi.org/10.1127/0935-1221/2011/0023-2119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

SUGIYAMA, Kazumasa, und Akihiko NAKATSUKA. „Mineralogy and Crystallography“. Nihon Kessho Gakkaishi 56, Nr. 3 (2014): 149. http://dx.doi.org/10.5940/jcrsj.56.149.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Щипцов, Владимир Владимирович, Ольга Борисовна Котова, Елена Германовна Ожогина, Борис Иванович Пирогов, Vladimir Shchiptsov, Olga Kotova, Elena Ozhogina und Boris Pirogov. „TECHNOLOGICAL MINERALOGY COMPREHENSIVELY“. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, Nr. 10 (26.10.2021): 44. http://dx.doi.org/10.17076/geo1481.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

MURAKAMI, Takashi. „Reactions in mineralogy.“ Japanese Magazine of Mineralogical and Petrological Sciences 32, Nr. 3 (2003): 161–64. http://dx.doi.org/10.2465/gkk.32.161.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Knittle, Elise. „Introduction to Mineralogy“. Eos, Transactions American Geophysical Union 81, Nr. 34 (2000): 389. http://dx.doi.org/10.1029/00eo00292.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Bloodworth, Andrew. „Mineralogy: Painful extractions“. Nature 517, Nr. 7533 (Januar 2015): 142–43. http://dx.doi.org/10.1038/517142a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Butcher, Alan R. „Applied Mineralogy ’03“. Minerals Engineering 16, Nr. 6 (Juni 2003): 571. http://dx.doi.org/10.1016/s0892-6875(03)00144-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Downs, James W. „Manual of mineralogy“. Geochimica et Cosmochimica Acta 59, Nr. 9 (Mai 1995): 1901. http://dx.doi.org/10.1016/0016-7037(95)90150-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

TOKONAMI, Masayasu. „Applications for mineralogy.“ Hyomen Kagaku 7, Nr. 1 (1986): 117–20. http://dx.doi.org/10.1380/jsssj.7.117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Vaughan, David J., und Claire L. Corkhill. „Mineralogy of Sulfides“. Elements 13, Nr. 2 (01.04.2017): 81–87. http://dx.doi.org/10.2113/gselements.13.2.81.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Haggerty, Stephen E. „Upper mantle mineralogy“. Journal of Geodynamics 20, Nr. 4 (Dezember 1995): 331–64. http://dx.doi.org/10.1016/0264-3707(95)00016-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Dunham, A. C. „Developments in industrial mineralogy: I. The mineralogy of brick-making“. Proceedings of the Yorkshire Geological Society 49, Nr. 2 (November 1992): 95–104. http://dx.doi.org/10.1144/pygs.49.2.95.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Matkovskyi, Orest, und Yevheniia Slyvko. „Academician Yevhen Lazarenko scientific readings and their contribution to the development of modern mineralogy“. Mineralogical Collection 71, Nr. 1 (2021): 3–27. http://dx.doi.org/10.30970/min.71.01.

Der volle Inhalt der Quelle
Annotation:
Periodic Scientific Readings named after Academician Yevhen Lazarenko were offered by his students and followers from the Department of Mineralogy of Ivan Franko National University of Lviv and Ukrainian Mineralogical Society. The corresponding decision was made by the participants of the scientific conference (1997) dedicated to the 80th anniversary of Ye. Lazarenko. After all, perpetuating the memory of outstanding scientists and assessing the importance of their contribution to the development of basic science is impossible without scientific forums organized in their honour. Eleven such Scientific Readings have already taken place, in which scientists, teachers, geologists-practitioners, graduate students and students of Ukraine and other countries took part. Participants of the Readings discussed various problems of mineralogy and related sciences (crystallography, geochemistry, petrography, the study of mineral deposits, etc.) and identified the role of Ye. Lazarenko and his Scientific Mineralogical School in the development of mineralogy in Ukraine and abroad, because, being patriot of Ukraine, Yevhen Kostiantynovych believed that science has no borders. Almost all Readings were thematic, dealing with the problems of regional and genetic mineralogy, mineralogical crystallography, applied mineralogy, history of science, as well as various aspects of space mineralogy, mineral ontogeny, thermobarogeochemistry, biomineralogy, technological and ecological mineralogy. Their materials have been published in separate editions and in the “Mineralogical Collection”, founded by Ye. Lazarenko. The results of the research presented during the Academician Yevhen Lazarenko Scientific Readings and published in different editions are extremely diverse and important both from a theoretical and applied point of view. Undoubtedly, they significantly enriched the mineralogical science not only in Ukraine but also in general, and testified to the fundamental nature of the scientific heritage of the outstanding scientist of the twentieth century – Academician Yevhen Lazarenko. Key words: Academician Yevhen Lazarenko, Scientific Readings, mineralogy, scientific directions of modern mineralogy, history of science, Ivan Franko National University of Lviv.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Burns, Roger G. „Spectroscopic Methods in Mineralogy and Geology reviews in mineralogy, vol. 18“. Geochimica et Cosmochimica Acta 54, Nr. 1 (Januar 1990): 253. http://dx.doi.org/10.1016/0016-7037(90)90214-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Keulen, Nynke, Sebastian Næsby Malkki und Shaun Graham. „Automated Quantitative Mineralogy Applied to Metamorphic Rocks“. Minerals 10, Nr. 1 (03.01.2020): 47. http://dx.doi.org/10.3390/min10010047.

Der volle Inhalt der Quelle
Annotation:
The ability to apply automated quantitative mineralogy (AQM) on metamorphic rocks was investigated on samples from the Fiskenæsset complex, Greenland. AQM provides the possibility to visualize and quantify microstructures, minerals, as well as the morphology and chemistry of the investigated samples. Here, we applied the ZEISS Mineralogic software platform as an AQM tool, which has integrated matrix corrections and full quantification of energy dispersive spectrometry data, and therefore is able to give detailed chemical information on each pixel in the AQM mineral maps. This has been applied to create mineral maps, element concentration maps, element ratio maps, mineral association maps, as well as to morphochemically classify individual minerals for their grain shape, size, and orientation. The visualization of metamorphic textures, while at the same time quantifying their textures, is the great strength of AQM and is an ideal tool to lift microscopy from the qualitative to the quantitative level.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Zhang, Qiong, und Jean-Baptist Peyaud. „Development and Validation of a Novel Interpretation Algorithm for Enhanced Resolution of Well Logging Signals“. Journal of Sensors 2021 (07.01.2021): 1–10. http://dx.doi.org/10.1155/2021/6610806.

Der volle Inhalt der Quelle
Annotation:
This work presents a novel algorithm that achieves enhanced resolution of well logging signals, e.g., from 1 ft of a pulsed neutron mineralogy tool to 0.04 ft of an imaging tool. The algorithm, denoted as “Digital Core,” combines mineralogical and sedimentological information to generate a high-resolution record of the formation mineralogy which can be consequently applied to thin bedded environments. The keystone to the philosophy of this algorithm is that the spectral information recorded by mineralogy tool is a weighted average of the mineralogy of each lithological component in the analyzed volume. Therefore, by using a high-resolution image log to determine the proportion of each lithological component, their composition can be determined from the mineralogy log data. A field case from a well located in South Australia is presented in this work, and the results validate the feasibility of an integrated core-level petrophysical analysis in a cost-effective and timely manner compared to conventional core measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Guntoro, Pratama Istiadi, Yousef Ghorbani und Jan Rosenkranz. „3D Ore Characterization as a Paradigm Shift for Process Design and Simulation in Mineral Processing“. BHM Berg- und Hüttenmännische Monatshefte 166, Nr. 8 (August 2021): 384–89. http://dx.doi.org/10.1007/s00501-021-01135-w.

Der volle Inhalt der Quelle
Annotation:
AbstractCurrent advances and developments in automated mineralogy have made it a crucial key technology in the field of process mineralogy, allowing better understanding and connection between mineralogy and the beneficiation process. The latest developments in X‑ray micro-computed tomography (µCT) have shown a great potential to let it become the next-generation automated mineralogy technique. µCT’s main benefit lies in its capability to allow 3D monitoring of the internal structure of the ore sample at resolutions down to a few hundred nanometers, thus excluding the common stereological error in conventional 2D analysis. Driven by the technological and computational progress, µCT is constantly developing as an analysis tool and successively it will become an essential technique in the field of process mineralogy. This study aims to assess the potential application of µCT systems, for 3D ore characterization through relevant case studies. The opportunities and platforms that µCT 3D ore characterization provides for process design and simulation in mineral processing are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Zhang, Qiong, und Jean-Baptist Peyaud. „Development and Validation of a Novel Interpretation Algorithm for Enhanced Resolution of Well Logging Signals“. Journal of Sensors 2021 (07.01.2021): 1–10. http://dx.doi.org/10.1155/2021/6610806.

Der volle Inhalt der Quelle
Annotation:
This work presents a novel algorithm that achieves enhanced resolution of well logging signals, e.g., from 1 ft of a pulsed neutron mineralogy tool to 0.04 ft of an imaging tool. The algorithm, denoted as “Digital Core,” combines mineralogical and sedimentological information to generate a high-resolution record of the formation mineralogy which can be consequently applied to thin bedded environments. The keystone to the philosophy of this algorithm is that the spectral information recorded by mineralogy tool is a weighted average of the mineralogy of each lithological component in the analyzed volume. Therefore, by using a high-resolution image log to determine the proportion of each lithological component, their composition can be determined from the mineralogy log data. A field case from a well located in South Australia is presented in this work, and the results validate the feasibility of an integrated core-level petrophysical analysis in a cost-effective and timely manner compared to conventional core measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Bhattacharyya, T., D. K. Pal und S. B. Deshpande. „On kaolinitic and mixed mineralogy classes of shrink - swell soils“. Soil Research 35, Nr. 6 (1997): 1245. http://dx.doi.org/10.1071/s96115.

Der volle Inhalt der Quelle
Annotation:
Spatially associated red (Typic Hapludalf) and black (Vertic Eutropept) soils developed on the Deccan plateau in the Western Ghats of India were analysed for clay mineralogy and also physical properties relating to shrink–swell. This was done in order to examine a possible correlation between shrink–swell phenomena and the content of expansible clay minerals, and to reconcile the apparent incompatibility between such a correlation and the classification of some Vertisols into kaolinitic, illitic, and mixed mineralogy classes. The fine clay mineralogy of the red soil was dominated by interstratified smectite/kaolinite with a little amount of smectite, but it had low cation exchange capacities and other associated non-vertic physical properties. Some of the smectite was interlayered with chlorite. This red soil is grouped into the kaolinitic mineralogy class. The fine clay mineralogy of the black soil was dominated by a highly smectitic interstratified smectite/kaolinite and also some smectite, which also shows some interlayering with chlorite. This soil has vertic physical properties but has a mixed mineralogy classification. The results suggest that there is an incompatibility between marked shrink–swell characteristics and mineralogical classification of soils in Soil Taxonomy, in view of the fact that it is smectite content which governs the vertic character of soils.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Naumko, I. M. „FINAL EDITION ON THE HISTORY OF MINERALOGY AND MINERALOGICAL KNOWLEDGE IN UKRAINE“. Geological Journal, Nr. 2 (26.06.2023): 68–74. http://dx.doi.org/10.30836/igs.1025-6814.2023.2.275507.

Der volle Inhalt der Quelle
Annotation:
Information on the history of mineralogical research and knowledge in the independent Ukraine (since 1991) іs summarized in the book. The world-famous scientific schools formed in the second half of the 20th century (1940–1990): regional mineralogical, thermobarogeochemical, crystallochemical, mineral physics are characterized. The achievements of scientists in regional, systematic and genetic mineralogy, crystal chemistry and mineral physics, mineralogical crystallography, bio- and nano-mineralogy, experimental, space and applied mineralogy, museum work, etc. were analyzed. It is shown that after the crisis of the 1990s, traditional scientific directions are expanding and deepening, and new scientific directions are being initiated, in particular nanomineralogy and ecological mineralogy, the number of minerals discovered in the depths of Ukraine is growing rapidly, new periodical editions, textbooks and manuals are appearing, work is underway to create of the modern monographic summary – the Ukrainian mineralogical encyclopedia. The analysis of the obtained mineralogical and historical knowledge aims at new achievements in the field of mineralogy within the framework of the next major research path – «to develop all scientific directions of mineralogy, but with an emphasis on giving priority to regional mineralogical and applied works». The publication shows the ways of development and the fate of mineralogy in crisis conditions, especially at the modern stage in the complex geopolitical conditions of today, in particular during the war with an external aggressor, therefore, it is timely and necessary, both for specialists in the field of Earth sciences, first of all, for geologists and mineralogists – scientists, teachers, practitioners, and for those who are interested in the history of science.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Aldis, Margot, Maximilian Posch und Julian Aherne. „Normative Mineralogy of 1170 Soil Profiles across Canada“. Minerals 13, Nr. 4 (12.04.2023): 544. http://dx.doi.org/10.3390/min13040544.

Der volle Inhalt der Quelle
Annotation:
Weathering of soil minerals provides base cations that buffer against acidity, and nutrients that support plant growth. In general, direct observations of soil minerals are rare; however, their abundance can be determined indirectly through soil geochemistry using normative-calculation procedures. This study compiled a data set of major oxide content from published and archived soil geochemical observations for 1170 sites across Canada (averaged over the soil profile [A, B, and C horizons], weighted by depth and bulk density to a maximum depth of 50 cm). Quantitative soil mineralogy (wt%) was systematically determined at each site using the normative method, ‘Analysis to Mineralogy’ (A2M); the efficacy of the approach was evaluated by comparison to X-ray Diffraction (XRD) mineralogy available for a subset of the study sites. At these sites, predicted A2M mineralogy was significantly related to estimated XRD, showing a strong linear relationship for plagioclase, quartz, and K-feldspar, and a moderate linear relationship for chlorite and muscovite. Further, the predicted A2M plagioclase content was almost identical to the estimated XRD soil mineralogy, showing no statistical difference. The Canada-wide predicted quantitative soil mineralogy was consistent with the underlying bedrock geology, such as in north-western Saskatchewan and north-eastern Alberta, which had high amounts of quartz due to the Western Canadian Sedimentary Basin. Other soil minerals (plagioclase, potassium feldspar, chlorite, and muscovite) varied greatly in response to changing bedrock geology across Canada. Normative approaches, such as A2M, provide a reliable approach for national-scale determination of quantitative soil mineralogy, which is essential for the assessment of soil weathering rates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Jones, Anthony P. „The mineralogy of cosmic dust: astromineralogy“. European Journal of Mineralogy 19, Nr. 6 (17.12.2007): 771–82. http://dx.doi.org/10.1127/0935-1221/2007/0019-1766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Palyanov, Yu N., und A. I. Nepomnyashchikh. „Modern Problems of Experimental Mineralogy, Petrology, and Geochemistry“. Russian Geology and Geophysics 64, Nr. 8 (01.08.2023): 889–91. http://dx.doi.org/10.2113/rgg20234631.

Der volle Inhalt der Quelle
Annotation:
Abstract —This Special issue of Russian Geology and Geophysics is a collection of papers on current problems of experimental mineralogy, petrology, and geochemistry discussed at the XVIII Russian Conference on Experimental Mineralogy (5–10 September 2022, Vinogradov Institute of Geochemistry, Irkutsk). The scope of considered issues ranges from laboratory modeling of mineral formation processes in different tectonic settings to technical mineralogy. The reported experiments are run at pressures and temperatures corresponding to crustal and mantle conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kittridge, Mark G. „Investigating the influence of mineralogy and pore shape on the velocity of carbonate rocks: Insights from extant global data sets“. Interpretation 3, Nr. 1 (01.02.2015): SA15—SA31. http://dx.doi.org/10.1190/int-2014-0054.1.

Der volle Inhalt der Quelle
Annotation:
Using a variety of recent public-domain data sets comprising porosity, velocity (P- and S-waves), and, in most cases, mineralogy and petrographic data, I created an extensive global data set and evaluated the importance of mineralogy and pore type on the elastic properties behavior of carbonate core plugs. Results from this investigation clearly illuminated the potential for overinterpreting elastic properties behavior as a function of pore type(s) when mineralogy was not explicitly included in the analysis. Rock-physics analysis using a combination of heuristic and theoretical models illustrated that mineralogy exerted a significant additional variation on velocity at a given porosity. Failure to account for mineralogy exacerbated inferences about the effect of pore type(s) made using a comparison of P-wave velocity to an inappropriate empirical model (Wyllie) that did not account for pore shape(s). In this analysis, extreme variability in carbonate velocity was observed in only portions of two data sets, when mineralogy was explicitly considered and robust models that accounted for inclusion (pore) shape were used. Results from this analysis resulted in a recommended workflow, including a rock-physics template and dry-rock modulus diagnostics, for the evaluation of lab-based carbonate rock-physics data. The workflow was amenable to further integration with well-based data and other core-based petrophysical measurements (e.g., electrical properties).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Stoll, Nicolas, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen und Ilka Weikusat. „Microstructure, micro-inclusions, and mineralogy along the EGRIP (East Greenland Ice Core Project) ice core – Part 2: Implications for palaeo-mineralogy“. Cryosphere 16, Nr. 2 (23.02.2022): 667–88. http://dx.doi.org/10.5194/tc-16-667-2022.

Der volle Inhalt der Quelle
Annotation:
Abstract. Impurities in polar ice do not only allow the reconstruction of past atmospheric aerosol concentrations but also influence the physical properties of the ice. However, the localisation of impurities inside the microstructure is still under debate and little is known about the mineralogy of solid inclusions. In particular, the general mineralogical diversity throughout an ice core and the specific distribution inside the microstructure is poorly investigated; the impact of the mineralogy on the localisation of inclusions and other processes is thus hardly known. We use dust particle concentration, optical microscopy, and cryo-Raman spectroscopy to systematically locate and analyse the mineralogy of micro-inclusions in situ inside 11 solid ice samples from the upper 1340 m of the East Greenland Ice Core Project ice core. Micro-inclusions are more variable in mineralogy than previously observed and are mainly composed of mineral dust (quartz, mica, and feldspar) and sulfates (mainly gypsum). Inclusions of the same composition tend to cluster, but clustering frequency and mineralogy changes with depth. A variety of sulfates dominate the upper 900 m, while gypsum is the only sulfate in deeper samples, which however contain more mineral dust, nitrates, and dolomite. The analysed part of the core can thus be divided into two depth regimes of different mineralogy, and to a lesser degree of spatial distribution, which could originate from different chemical reactions in the ice or large-scale changes in ice cover in northeast Greenland during the mid-Holocene. The complexity of impurity mineralogy on the metre scale and centimetre scale in polar ice is still underestimated, and new methodological approaches are necessary to establish a comprehensive understanding of the role of impurities. Our results show that applying new methods to the mineralogy in ice cores and recognising its complexity, as well as the importance for localisation studies, open new avenues for understanding the role of impurities in ice cores.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Namdar, A. „Mineralogy in Geotechnical Engineering“. Journal of Engineering Science and Technology Review 3, Nr. 1 (Juni 2010): 108–10. http://dx.doi.org/10.25103/jestr.031.18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Villa, Igor M., und John M. Hanchar. „Age discordance and mineralogy“. American Mineralogist 102, Nr. 12 (01.12.2017): 2422–39. http://dx.doi.org/10.2138/am-2017-6084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Gunter, Mickey Eugene, und Stephen Matthew Schares. „Computerized Optical Mineralogy Calculations“. Journal of Geological Education 39, Nr. 4 (September 1991): 289–90. http://dx.doi.org/10.5408/0022-1368-39.4.289.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

NAKAI, Izumi. „Inorganic Materials and Mineralogy“. Journal of the Mineralogical Society of Japan 18, Nr. 6 (1989): 369–81. http://dx.doi.org/10.2465/gkk1952.18.369.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

TAGAI, Tokuhei. „The Dawn of Mineralogy“. Journal of Geography (Chigaku Zasshi) 131, Nr. 2 (25.04.2022): 133–46. http://dx.doi.org/10.5026/jgeography.131.133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie