Zeitschriftenartikel zum Thema „Mineral Processing“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Mineral Processing.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Mineral Processing" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Chanturiya, Valentine A., und Igor Zh Bunin. „Advances in Pulsed Power Mineral Processing Technologies“. Minerals 12, Nr. 9 (19.09.2022): 1177. http://dx.doi.org/10.3390/min12091177.

Der volle Inhalt der Quelle
Annotation:
In Russia and globally, pulsed power technologies have been proposed based on the conversion of energy into a short-pulsed form and exposing geomaterials (minerals, rocks, and ores) to strictly dosed high-power pulsed electric and magnetic fields, beams of charged particles, microwave radiation, neutrons and X-ray quanta, and low-temperature plasma flows. Such pulsed energy impacts are promising methods for the pretreatment of refractory mineral feeds (refractory ores and concentration products) to increase the disintegration, softening, and liberation performance of finely disseminated mineral complexes, as well as the contrast between the physicochemical and process properties of mineral components. In this paper, we briefly review the scientific foundations of the effect of both high-power nanosecond electromagnetic pulses (HPEMP) and dielectric barrier discharge (DBD) in air on semiconductor ore minerals (sulfides, rare metals minerals) and rock-forming dielectric minerals. The underlying mechanisms of mineral intergrowth disintegration and changes in the structural and chemical states of the mineral surface when exposed to HPEMP and DBD irradiation are discussed. The high performance and potential limitations of pulsed energy impact and low-temperature plasma produced by DBD treatment of geomaterials are discussed in terms of the directional change in the process properties of the minerals to improve the concentration performance of refractory minerals and ores.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Adorjan, L. A. „Mineral Processing Innovations“. Canadian Metallurgical Quarterly 24, Nr. 1 (Januar 1985): 15–25. http://dx.doi.org/10.1179/cmq.1985.24.1.15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Apling, Alan. „Mineral processing technology“. Corrosion Science 36, Nr. 4 (April 1994): 743–44. http://dx.doi.org/10.1016/0010-938x(94)90078-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mikhlin, Yuri. „X-ray Photoelectron Spectroscopy in Mineral Processing Studies“. Applied Sciences 10, Nr. 15 (26.07.2020): 5138. http://dx.doi.org/10.3390/app10155138.

Der volle Inhalt der Quelle
Annotation:
Surface phenomena play the crucial role in the behavior of sulfide minerals in mineral processing of base and precious metal ores, including flotation, leaching, and environmental concerns. X-ray photoelectron spectroscopy (XPS) is the main experimental technique for surface characterization at present. However, there exist a number of problems related with complex composition of natural mineral systems, and instability of surface species and mineral/aqueous phase interfaces in the spectrometer vacuum. This overview describes contemporary XPS methods in terms of categorization and quantitative analysis of oxidation products, adsorbates and non-stoichiometric layers of sulfide phases, depth and lateral spatial resolution for minerals and ores under conditions related to mineral processing and hydrometallurgy. Specific practices allowing to preserve volatile species, e.g., elemental sulfur, polysulfide anions and flotation collectors, as well as solid/liquid interfaces are surveyed; in particular, the prospects of ambient pressure XPS and cryo-XPS of fast-frozen wet mineral pastes are discussed. It is also emphasized that further insights into the surface characteristics of individual minerals in technological slurries need new protocols of sample preparation in conjunction with high spatial resolution photoelectron spectroscopy that is still unavailable or unutilized in practice.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yvon, Jacques, Philippe Marion, Laurent Michot, Frédéric Villieras, Friedrich Ernst Wagner und Jοspeh Friedl. „Development of mineralogy applications in mineral processing“. European Journal of Mineralogy 3, Nr. 4 (27.08.1991): 667–76. http://dx.doi.org/10.1127/ejm/3/4/0667.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Han, Xiu Li, Chang Cun Li und Li Na Liu. „Study on Processing Mineralogy of Xuanhua Iron Ore“. Applied Mechanics and Materials 50-51 (Februar 2011): 751–55. http://dx.doi.org/10.4028/www.scientific.net/amm.50-51.751.

Der volle Inhalt der Quelle
Annotation:
The chemical component, mineral composition and dissemination characteristics of Xuanhua iron ore are researched systematically. The result shows that: the iron ore mainly is oolitic structure and colloform, xenomorphic granular texture, the mineral composition is complex, the primary metallic minerals is hematite, and the rocky minerals mainly is quartz, followed by carbonate, epidote, chlorite, and amphibole. The diffraction size of hematite and rocky minerals is fine. It is difficult to liberate between hematite and rocky minerals and easy to be mud. The iron ore is very hard to separate, and it can be used in the process of stage grinding and concentration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pham, Luan Van. „Challenges and opportunities for development of the Vietnam mineral processing in the XXI century“. Journal of Mining and Earth Sciences 62, Nr. 3b (20.07.2021): 1–8. http://dx.doi.org/10.46326/jmes.2021.62(3b).01.

Der volle Inhalt der Quelle
Annotation:
Mineral mining and processing Industry of Vietnam is facing a number of huge challenges at present, but there are also great opportunities for its growth in the future. Mineral processing plants need to make breakthrough improvements in the process designing, technology and equipment utilisation in order to meet requirements of the new era. These challenges force our miners and mineral processing operators to constantly make efforts in researches and to bring best solutions to improve plant operations to ensure the requirements of safety, market demands, product quality, sustainable development and environmental friendliness. Specifically, the issues that need to be addressed urgently are capacity and quality of the workforce, tailings treatment, fine particle processing, ores of low washability, recovery rate increase and maximisation of recoverable valuable minerals, environmental issues and workplace safety monitoring and control, maximasation of production efficiency and reduction of operating costs. This report presents the current key challenges of the mining and mineral processing industry in order to help professionals and policy makers in the field of mineral mining and processing to bring rational directions for action initiate appropriate studies and improve management methods; to help mineral processing plants in improving the production efficiency and recovery of valuable minerals; to reduce operating costs and to become environmentally friendly and to develop sustainably.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Herbst, John A., und Donghong Gao. „Mining and mineral processing“. International Journal of Computational Fluid Dynamics 23, Nr. 2 (Februar 2009): 79–80. http://dx.doi.org/10.1080/10618560902811450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Attia, Y. A. „Challenges in mineral processing“. International Journal of Mineral Processing 31, Nr. 1-2 (April 1991): 146–47. http://dx.doi.org/10.1016/0301-7516(91)90012-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wills, B. A. „Challenges in mineral processing“. Minerals Engineering 2, Nr. 3 (Januar 1989): 431–34. http://dx.doi.org/10.1016/0892-6875(89)90012-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Deng, Jiushuai, und Hongxiang Xu. „Discussion on the Teaching of “Metallic Mineral Processing” for Mineral Processing Engineering“. Journal of Contemporary Educational Research 6, Nr. 11 (17.11.2022): 23–27. http://dx.doi.org/10.26689/jcer.v6i11.4485.

Der volle Inhalt der Quelle
Annotation:
Social economic growth and the increasing demand for mineral resources have promoted the development of metallic mineral processing technology. Therefore, in order to satisfy the demands for development in mining, cultivating comprehensive mineral processing engineering professionals with strong innovative practical skills has become the top priority in current education. We have established a new course, “Metallic Mineral Processing,” for students majoring in mineral processing engineering in universities, with coal and other sources of energy as the main focus. This paper analyzes the purpose and significance of setting up this course and the exploration of the reform of the teaching mode, with the aim of improving the teaching quality and ensuring the cultivation of mineral processing engineering undergraduates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Song, Shaoxian. „Dry mineral processing: the new topic of XXXII international mineral processing congress“. Minerals and Mineral Materials 2, Nr. 1 (2023): 2. http://dx.doi.org/10.20517/mmm.2023.01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Ndlovu, Bulelwa, Saeed Farrokhpay und Dee Bradshaw. „The effect of phyllosilicate minerals on mineral processing industry“. International Journal of Mineral Processing 125 (Dezember 2013): 149–56. http://dx.doi.org/10.1016/j.minpro.2013.09.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Okada, Natsuo, Yohei Maekawa, Narihiro Owada, Kazutoshi Haga, Atsushi Shibayama und Youhei Kawamura. „Automated Identification of Mineral Types and Grain Size Using Hyperspectral Imaging and Deep Learning for Mineral Processing“. Minerals 10, Nr. 9 (13.09.2020): 809. http://dx.doi.org/10.3390/min10090809.

Der volle Inhalt der Quelle
Annotation:
In mining operations, an ore is separated into its constituents through mineral processing methods, such as flotation. Identifying the type of minerals contained in the ore in advance aids greatly in performing faster and more efficient mineral processing. The human eye can recognize visual information in three wavelength regions: red, green, and blue. With hyperspectral imaging, high resolution spectral data that contains information from the visible light wavelength region to the near infrared region can be obtained. Using deep learning, the features of the hyperspectral data can be extracted and learned, and the spectral pattern that is unique to each mineral can be identified and analyzed. In this paper, we propose an automatic mineral identification system that can identify mineral types before the mineral processing stage by combining hyperspectral imaging and deep learning. By using this technique, it is possible to quickly identify the types of minerals contained in rocks using a non-destructive method. As a result of experimentation, the identification accuracy of the minerals that underwent deep learning on the red, green, and blue (RGB) image of the mineral was approximately 30%, while the result of the hyperspectral data analysis using deep learning identified the mineral species with a high accuracy of over 90%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Machado, AfrânioFranco. „Mineral technology and mineral processing & hydrometallurgy meetings“. Filtration & Separation 30, Nr. 2 (März 1993): 123–25. http://dx.doi.org/10.1016/0015-1882(93)80099-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Kholoshyn, Ihor, Natalia Panteleeva, Oleksandr Trunin, Liudmyla Burman und Olga Kalinichenko. „Infrared spectroscopy as the method for evaluating technological properties of minerals and their behavior in technological processes“. E3S Web of Conferences 166 (2020): 02002. http://dx.doi.org/10.1051/e3sconf/202016602002.

Der volle Inhalt der Quelle
Annotation:
Infrared spectroscopy (IR) is a highly effective method for the analysis of minerals, rocks and ores, capable of solving a whole range of problems when choosing innovative solutions for the technological processing of various types of mineral raw materials. The article considers the main directions of using the infrared spectroscopy method in assessing the technological properties of minerals and their behavior in technological processes: evaluation of the grade (quality) of mineral raw materials; analysis of the behavior of minerals in the technological process with prediction of their technological properties; analysis of changes in the structure and properties of minerals in technological processes; operational analysis of mineral substances at various stages of technological processing. The article illustrates all aspects of the use of infrared spectroscopy at various stages of studying the material composition of mineral raw materials in its enrichment assessment by specific examples of solving problems arising from the technological redistribution of various types of ore and non-metallic minerals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

CHEN, Jian-ming, Run-qing LIU, Wei SUN und Guan-zhou QIU. „Effect of mineral processing wastewater on flotation of sulfide minerals“. Transactions of Nonferrous Metals Society of China 19, Nr. 2 (April 2009): 454–57. http://dx.doi.org/10.1016/s1003-6326(08)60294-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Syvyj, M. „Issue of the rational mineral resources usage of the region“. Visnyk of the Lviv University. Series Geography, Nr. 37 (09.09.2009): 65–75. http://dx.doi.org/10.30970/vgg.2009.37.2373.

Der volle Inhalt der Quelle
Annotation:
Questions of the rational depths use and guard in the context of rational nature management in the districts of intensive mineral raw resources booty and processing were considered. Key words: mineral raw resources, minerals, mining wastes, rational use, mineral raw resources cadastre.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Khat’kova, A. N., L. G. Nikitina, S. A. Pateyuk und V. G. Cherkasov. „Borogypsum: mineral composition, processing technology“. Vestnik of Geosciences 3 (2020): 22–27. http://dx.doi.org/10.19110/geov.2020.3.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Pomykała, Radosław, und Barbara Tora. „Circular Economy in Mineral Processing“. E3S Web of Conferences 18 (2017): 01024. http://dx.doi.org/10.1051/e3sconf/20171801024.

Der volle Inhalt der Quelle
Annotation:
The paper aims to implementation of Circular Economy in mineral processing in Poland. Circular economy represents a completely new approach to product life cycle, based on the departure from the linear model of “take – make – dispose” and turning to the circular or closed-circle model of economy. Challenges and opportunities of implementation of Circular Economy in Mining is presented. The VERAM project, financed by The European Union (by the EUR 1.4 million) to the project is described. The examples of good practice in the area of implementation of circular economy in Poland is presented (Tauron Wydobycie - wasteless mine and ZGH Bolesław - waste management)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

ROSENKRANZ, Jan, und Pertti LAMBERG. „Sustainable Processing of Mineral Resources“. International Journal of the Society of Materials Engineering for Resources 20, Nr. 1 (2014): 17–22. http://dx.doi.org/10.5188/ijsmer.20.17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Pomykała, Radosław, und Barbara Tora. „Circular Economy in Mineral Processing“. E3S Web of Conferences 18 (2017): 01024. http://dx.doi.org/10.1051/e3sconf/201712301024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

OGWUEGBU, MARTIN ONWU CHIDOZIE, und FRED CHILESHE. „Coordination Chemistry in Mineral Processing“. Mineral Processing and Extractive Metallurgy Review 21, Nr. 6 (Oktober 2000): 497–525. http://dx.doi.org/10.1080/08827500008914176.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

TIKHONOV, OLEG N. „Separational Characteristics of Mineral Processing“. Mineral Processing and Extractive Metallurgy Review 2, Nr. 1-2 (Oktober 1985): 105–34. http://dx.doi.org/10.1080/08827508508952602.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

GUILLANEAU, J. C., J. VILLENEUVE, M. V. DURANCE, S. BROCHOT und G. FOURNIGUET. „Simulation Improvements in Mineral Processing“. Mineral Processing and Extractive Metallurgy Review 15, Nr. 1-4 (Dezember 1995): 205–16. http://dx.doi.org/10.1080/08827509508914199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Laznicka, Peter. „Mineral Deposits: Processes to Processing“. Ore Geology Reviews 17, Nr. 1-2 (September 2000): 139–40. http://dx.doi.org/10.1016/s0169-1368(00)00005-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Siriluck, Siwarote. „Bio Mineral Processing“. Journal of King Mongkut's University of Technology North Bangkok, 10.11.2017. http://dx.doi.org/10.14416/j.kmutnb.2017.11.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

„Recent mineral processing publications“. Minerals Engineering 9, Nr. 4 (April 1996): 487–88. http://dx.doi.org/10.1016/s0892-6875(96)90004-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

„Recent mineral processing publications“. Minerals Engineering 9, Nr. 10 (Oktober 1996): 1099–103. http://dx.doi.org/10.1016/s0892-6875(96)90020-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

„Recent mineral processing publications“. Minerals Engineering 9, Nr. 5 (Mai 1996): 599–602. http://dx.doi.org/10.1016/s0892-6875(96)90031-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

„Recent mineral processing publications“. Minerals Engineering 9, Nr. 3 (März 1996): 378–82. http://dx.doi.org/10.1016/s0892-6875(96)90040-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

„Recent mineral processing publications“. Minerals Engineering 9, Nr. 9 (September 1996): 1015–16. http://dx.doi.org/10.1016/s0892-6875(96)90067-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

„Recent mineral processing publications“. Minerals Engineering 9, Nr. 6 (Juni 1996): 705–6. http://dx.doi.org/10.1016/s0892-6875(96)90072-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

„Recent mineral processing publications“. Minerals Engineering 9, Nr. 1 (Januar 1996): 147–56. http://dx.doi.org/10.1016/s0892-6875(96)90078-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

„Recent mineral processing publications“. Minerals Engineering 9, Nr. 7 (Juli 1996): 791–96. http://dx.doi.org/10.1016/s0892-6875(96)90088-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

„Recent mineral processing publications“. Minerals Engineering 9, Nr. 12 (Dezember 1996): 1283–85. http://dx.doi.org/10.1016/s0892-6875(96)90103-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

„Recent mineral processing publications“. Minerals Engineering 9, Nr. 11 (November 1996): 1177–79. http://dx.doi.org/10.1016/s0892-6875(96)90143-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

„Recent mineral processing publications“. Minerals Engineering 10, Nr. 8 (August 1997): 889–93. http://dx.doi.org/10.1016/s0892-6875(97)00068-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

„Mineral processing tailings disposal“. Minerals Engineering 11, Nr. 3 (März 1998): 305. http://dx.doi.org/10.1016/s0892-6875(97)83561-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

„Recent mineral processing publications“. Minerals Engineering 10, Nr. 12 (Dezember 1997): 1439–43. http://dx.doi.org/10.1016/s0892-6875(97)90043-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

„Recent mineral processing publications“. Minerals Engineering 10, Nr. 6 (Juni 1997): 647–49. http://dx.doi.org/10.1016/s0892-6875(97)90044-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

„Recent mineral processing publications“. Minerals Engineering 10, Nr. 10 (Oktober 1997): 1189–92. http://dx.doi.org/10.1016/s0892-6875(97)90089-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

„Recent mineral processing publications“. Minerals Engineering 10, Nr. 2 (Februar 1997): 249–54. http://dx.doi.org/10.1016/s0892-6875(97)90143-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

„Recent mineral processing publications“. Minerals Engineering 10, Nr. 4 (April 1997): 457–59. http://dx.doi.org/10.1016/s0892-6875(97)90205-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

„Recent mineral processing publications“. Minerals Engineering 10, Nr. 1 (Januar 1997): 125–26. http://dx.doi.org/10.1016/s0892-6875(97)90239-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

„Recent mineral processing publications“. Minerals Engineering 11, Nr. 6 (Juni 1998): 589–94. http://dx.doi.org/10.1016/s0892-6875(98)90023-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

„Recent mineral processing publications“. Minerals Engineering 11, Nr. 1 (Januar 1998): 91–112. http://dx.doi.org/10.1016/s0892-6875(98)90039-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

„Recent mineral processing publications“. Minerals Engineering 11, Nr. 7 (Juli 1998): 677–81. http://dx.doi.org/10.1016/s0892-6875(98)90053-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

„Recent mineral processing publications“. Minerals Engineering 11, Nr. 9 (September 1998): 881–90. http://dx.doi.org/10.1016/s0892-6875(98)90055-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

„Recent mineral processing publications“. Minerals Engineering 11, Nr. 12 (Dezember 1998): 1237–39. http://dx.doi.org/10.1016/s0892-6875(98)90058-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie