Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Millimeter wave radars“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Millimeter wave radars" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Millimeter wave radars"
Essen, Helmut, Manfred Hägelen, Alfred Wahlen, Karsten Schulz, Klaus Jäger und Marcus Hebel. „ISAR imaging of helicopters using millimeter wave radars“. International Journal of Microwave and Wireless Technologies 1, Nr. 3 (Juni 2009): 171–78. http://dx.doi.org/10.1017/s1759078709000257.
Der volle Inhalt der QuelleVavriv, D. M., V. A. Volkov, V. N. Bormotov, V. V. Vynogradov, R. V. Kozhyn, B. V. Trush, A. A. Belikov und V. Ye Semenyuta. „Millimeter-Wave Radars for Environmental Studies“. Telecommunications and Radio Engineering 61, Nr. 4 (2004): 292–313. http://dx.doi.org/10.1615/telecomradeng.v61.i4.30.
Der volle Inhalt der QuelleHogan, Robin J., Lin Tian, Philip R. A. Brown, Christopher D. Westbrook, Andrew J. Heymsfield und Jon D. Eastment. „Radar Scattering from Ice Aggregates Using the Horizontally Aligned Oblate Spheroid Approximation“. Journal of Applied Meteorology and Climatology 51, Nr. 3 (März 2012): 655–71. http://dx.doi.org/10.1175/jamc-d-11-074.1.
Der volle Inhalt der QuelleBhutani, Akanksha, Sören Marahrens, Michael Gehringer, Benjamin Göttel, Mario Pauli und Thomas Zwick. „The Role of Millimeter-Waves in the Distance Measurement Accuracy of an FMCW Radar Sensor“. Sensors 19, Nr. 18 (12.09.2019): 3938. http://dx.doi.org/10.3390/s19183938.
Der volle Inhalt der QuelleAntolinos, Elías, Federico García-Rial, Clara Hernández, Daniel Montesano, Juan I. Godino-Llorente und Jesús Grajal. „Cardiopulmonary Activity Monitoring Using Millimeter Wave Radars“. Remote Sensing 12, Nr. 14 (15.07.2020): 2265. http://dx.doi.org/10.3390/rs12142265.
Der volle Inhalt der QuelleAbdu, Fahad Jibrin, Yixiong Zhang, Maozhong Fu, Yuhan Li und Zhenmiao Deng. „Application of Deep Learning on Millimeter-Wave Radar Signals: A Review“. Sensors 21, Nr. 6 (10.03.2021): 1951. http://dx.doi.org/10.3390/s21061951.
Der volle Inhalt der QuelleLevy, Chagai, Monika Pinchas und Yosef Pinhasi. „Coherent Integration Loss Due to Nonstationary Phase Noise in High-Resolution Millimeter-Wave Radars“. Remote Sensing 13, Nr. 9 (30.04.2021): 1755. http://dx.doi.org/10.3390/rs13091755.
Der volle Inhalt der QuelleKutsov, Vladimir, Vladimir Badenko, Sergey Ivanov und Alexander Fedotov. „Millimeter Wave Radar for Intelligent Transportation Systems: a Case Study of Multi-Target Problem Solution“. E3S Web of Conferences 157 (2020): 05011. http://dx.doi.org/10.1051/e3sconf/202015705011.
Der volle Inhalt der QuellePan, Mingming, Adrien Chopard, Frederic Fauquet, Patrick Mounaix und Jean-Paul Guillet. „Guided Reflectometry Imaging Unit Using Millimeter Wave FMCW Radars“. IEEE Transactions on Terahertz Science and Technology 10, Nr. 6 (November 2020): 647–55. http://dx.doi.org/10.1109/tthz.2020.3008330.
Der volle Inhalt der QuelleGonzalez-Partida, J. T., P. Almorox-Gonzalez, M. Burgos-Garcia, B. P. Dorta-Naranjo und J. I. Alonso. „Through-the-Wall Surveillance With Millimeter-Wave LFMCW Radars“. IEEE Transactions on Geoscience and Remote Sensing 47, Nr. 6 (Juni 2009): 1796–805. http://dx.doi.org/10.1109/tgrs.2008.2007738.
Der volle Inhalt der QuelleDissertationen zum Thema "Millimeter wave radars"
Lotti, Marina, und Marina Lotti. „Experimental characterization of millimeter-wave radars for mapping and localization“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19891/.
Der volle Inhalt der QuelleVasanelli, Claudia [Verfasser]. „Antenna array design solutions for millimeter-wave vehicle-integrated automotive radars / Claudia Vasanelli“. Ulm : Universität Ulm, 2020. http://d-nb.info/1206248769/34.
Der volle Inhalt der QuelleSong, Peter. „Millimeter-wave integrated circuit design in silicon-germanium technology for next generation radars“. Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53450.
Der volle Inhalt der QuelleTill, Přemysl. „Nástroje pro počítání a monitorování osob“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442531.
Der volle Inhalt der QuelleFaus, García Óscar. „Signal Processing for mmWave MIMO Radar“. Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-19866.
Der volle Inhalt der QuelleAmeziane, El Hassani Chama. „Contribution à la réalisation d’un oscillateur push-push 80GHz synchronisé par un signal subharmonique pour des applications radars anticollisions“. Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14025/document.
Der volle Inhalt der QuelleThis thesis is a part of a French project "VELO". The project is collaboration between STMicroelectronics and several laboratories including IMS-Bordeaux and LAAS laboratories. The aim of this project is to achieve a prototype of millimeter anti-collision radar. In this work a frequency synthesizer is implemented. This circuit will be incorporated in the reception chain of the demonstrator. A bibliographical study of classical architecture was completed. Examples of architectures encountered in the millimeter frequency range have been studied. The purpose of this thesis is to study the phenomena of synchronization in oscillators. The objective is to design an injection locked oscillator ILO driven by another oscillator, the second oscillator operates at lower frequency and offers better stability and noise characteristics.In this thesis, the injection locking mechanism of the oscillators has been described. A model of synchronization by series injection is proposed. The model is based on the theory of Huntoon and Weiss and inspired by Badets’ work performed on parallel injection. The theory expresses the synchronized frequency range depending on the used topology and the values of the components. The validity of the theory was evaluated by simulation. The results show good agreement between simulation and theory and validate the principle of synchronization by injection.The feasibility of a millimeter ILO synchronized by the harmonic of a reference signal operating at lower frequency has been demonstrated experimentally. The synthesizer was implemented in BiCMOS technology for 130nm applications millimeter of STMicroelectronics. The oscillator operates at 82.5 GHz and performs a frequency range of 2GHz. The noise performance of the synthesizer is satisfactory. The phase noise of the ILO depends on the reference phase noise, and reaches values of -110dBc/Hz at 1MHz from the carrier frequency
Farneti, Elia. „Millimeter wave radar for SLAM applications“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19782/.
Der volle Inhalt der QuelleGholamhosseinpour, Ali. „Millimeter Wave Radar Interfacing with Android Smartphone“. Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-10776.
Der volle Inhalt der QuelleZhang, Renyuan, und Siyang Cao. „3D Imaging Millimeter Wave Circular Synthetic Aperture Radar“. MDPI AG, 2017. http://hdl.handle.net/10150/624963.
Der volle Inhalt der QuelleJolly, Alistair Duncan. „Feature extraction from millimetre wave radar images“. Thesis, University of Central Lancashire, 1992. http://clok.uclan.ac.uk/19034/.
Der volle Inhalt der QuelleBücher zum Thema "Millimeter wave radars"
Currie, Nicholas C. Millimeter-wave radar clutter. Boston: Artech House, 1992.
Den vollen Inhalt der Quelle findenN, Afsar Mohammed, Society of Photo-optical Instrumentation Engineers. und Tufts University, Hrsg. Millimeter and submillimeter waves IV: Proceedings of the 4th International Conference on Millimeter and Submillimeter Waves and Applications, 20-23 July 1998, San Diego, California. Bellingham, Wash: SPIE, 1998.
Den vollen Inhalt der Quelle findenRanney, Kenneth I. Radar sensor technology XII: 18-19 March, 2008, Orlando, Florida, USA. Bellingham, Wash: SPIE, 2008.
Den vollen Inhalt der Quelle findenRanney, Kenneth I. Radar sensor technology XIII: 13-15 April 2009, Orlando, Florida, United States. Herausgegeben von SPIE (Society). Bellingham, Wash: SPIE, 2009.
Den vollen Inhalt der Quelle findenKissinger, Dietmar. Millimeter-Wave Receiver Concepts for 77 GHz Automotive Radar in Silicon-Germanium Technology. Boston, MA: Springer US, 2012.
Den vollen Inhalt der Quelle findenYankielun, Norbert E. An airborne millimeter-wave FM-CW radar for thickness profiling of freshwater ice. Hanover, N.H: U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1992.
Den vollen Inhalt der Quelle findenKissinger, Dietmar. Millimeter-Wave Receiver Concepts for 77 GHz Automotive Radar in Silicon-Germanium Technology. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-2290-7.
Der volle Inhalt der QuelleEuropean, Radar Conference (4th 2007 Munich Germany). 2007 European Radar Conference: Munich, Germany, 10-12 October 2007. Piscataway, NJ: Available from IEEE Service Center, 2007.
Den vollen Inhalt der Quelle findenEuropean Radar Conference (4th 2007 Munich, Germany). 2007 European Radar Conference: Munich, Germany, 10-12 October 2007. Piscataway, NJ: Available from IEEE Service Center, 2007.
Den vollen Inhalt der Quelle findenEngland) European Radar Conference (3rd 2006 Manchester. 2006 European Radar Conference: Manchester, United Kingdom, 13-15 September 2006. Piscataway, NJ: IEEE, 2006.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Millimeter wave radars"
Cherniak, Dmytro, und Salvatore Levantino. „Chirp Generators for Millimeter-Wave FMCW Radars“. In Special Topics in Information Technology, 33–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32094-2_3.
Der volle Inhalt der QuelleBi, Xin. „Millimeter Wave Radar Technology“. In Environmental Perception Technology for Unmanned Systems, 17–65. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8093-2_2.
Der volle Inhalt der QuelleEssen, Helmut. „Airborne Remote Sensing at Millimeter Wave Frequencies“. In Radar Remote Sensing of Urban Areas, 249–71. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3751-0_11.
Der volle Inhalt der QuelleJain, Vipul, und Payam Heydari. „A BiCMOS Dual-Band Millimeter-Wave Frequency Synthesizer“. In Automotive Radar Sensors in Silicon Technologies, 37–64. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-6775-6_5.
Der volle Inhalt der QuelleGómez-García, Roberto, José-María Muñoz-Ferreras und Manuel Sánchez-Renedo. „Multiband RF Front-Ends for Radar and Communications Applications“. In Microwave and Millimeter Wave Circuits and Systems, 275–94. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405864.ch10.
Der volle Inhalt der QuelleLiu, Yu, Yuheng Wang, Haipeng Liu, Anfu Zhou, Jianhua Liu und Ning Yang. „Long-Range Gesture Recognition Using Millimeter Wave Radar“. In Green, Pervasive, and Cloud Computing, 30–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64243-3_3.
Der volle Inhalt der QuelleDogru, Sedat, Rui Baptista und Lino Marques. „Tracking Drones with Drones Using Millimeter Wave Radar“. In Advances in Intelligent Systems and Computing, 392–402. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36150-1_32.
Der volle Inhalt der QuelleKocur, Dušan, und Jana Rovňáková. „Short-Range Tracking of Moving Targets by a Handheld UWB Radar System“. In Microwave and Millimeter Wave Circuits and Systems, 207–25. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118405864.ch8.
Der volle Inhalt der QuelleScherr, Steffen, Sven Thomas, Mario Pauli, Serdal Ayhan, Nils Pohl und Thomas Zwick. „High Accuracy Millimetre Wave Radar for Micro Machining“. In Lecture Notes in Production Engineering, 181–98. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49269-8_12.
Der volle Inhalt der QuelleCao, Chen, und Yu-Chen Liu. „An Error Compensation Method Based on Millimeter Wave Radar“. In Advances in Intelligent Systems and Computing, 153–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00214-5_20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Millimeter wave radars"
Johnston, Stephen L. „Millimeter wave meteorological radars“. In 15th International Conference on Infrared and Millimeter Waves. SPIE, 1990. http://dx.doi.org/10.1117/12.2301619.
Der volle Inhalt der QuelleVavriv, D. M., O. O. Bezvesilniy, V. A. Volkov, A. A. Kravtsov und E. V. Bulakh. „Recent advances in millimeter-wave radars“. In 2015 International Conference on Antenna Theory and Techniques (ICATT). IEEE, 2015. http://dx.doi.org/10.1109/icatt.2015.7136774.
Der volle Inhalt der QuelleKawanishi, Tetsuya. „Millimeter-Wave Radars using Radio-Over-Fibers“. In 2018 IEEE Photonics Conference (IPC). IEEE, 2018. http://dx.doi.org/10.1109/ipcon.2018.8527122.
Der volle Inhalt der QuelleSchoenlinner, Bernhard, Xidong Wu, George V. Eleftheriades und Gabriel M. Rebeiz. „Spherical-Lens Antennas For Millimeter Wave Radars“. In 2001 31st European Microwave Conference. IEEE, 2001. http://dx.doi.org/10.1109/euma.2001.339108.
Der volle Inhalt der QuelleSeashore, C. R. „MIMIC For Millimeter Wave Integrated Circuit Radars“. In Technical Symposium Southeast, herausgegeben von James T. Coleman und James C. Wiltse. SPIE, 1987. http://dx.doi.org/10.1117/12.940805.
Der volle Inhalt der QuelleGagnon, Andre, und Mike Kwong. „Recent Developments in Ground Based Millimeter Wave Radars“. In 2007 41st Annual IEEE International Carnahan Conference on Security Technology. IEEE, 2007. http://dx.doi.org/10.1109/ccst.2007.4373488.
Der volle Inhalt der QuelleGuerra, Anna, Francesco Guidi und Davide Dardari. „Millimeter-wave personal radars for 3D environment mapping“. In 2014 48th Asilomar Conference on Signals, Systems and Computers. IEEE, 2014. http://dx.doi.org/10.1109/acssc.2014.7094538.
Der volle Inhalt der QuelleVavriv, D. M. „Millimeter-Wave Magnetron Transmitters for High-Resolution Radars“. In HIGH ENERGY DENSITY AND HIGH POWER RF: 7th Workshop on High Energy Density and High Power RF. AIP, 2006. http://dx.doi.org/10.1063/1.2158794.
Der volle Inhalt der QuelleXu, Tianqi, Lei Du, Jie Bai, Qiao Sun und Xiaolei Wang. „Kinematic Parameters Calibration for Automotive Millimeter-Wave Radars“. In 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive). IEEE, 2021. http://dx.doi.org/10.1109/metroautomotive50197.2021.9502893.
Der volle Inhalt der QuelleFloyd, Brian. „Market opportunities and testing challenges for millimeter-wave radios and radars“. In 2014 IEEE International Test Conference (ITC). IEEE, 2014. http://dx.doi.org/10.1109/test.2014.7035302.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Millimeter wave radars"
Clothiaux, Eugene, Mark Miller, Robin Perez, David Turner, Kenneth Moran, Brooks Martner, Thomas Ackerman et al. The ARM Millimeter Wave Cloud Radars (MMCRs) and the Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP). Office of Scientific and Technical Information (OSTI), März 2001. http://dx.doi.org/10.2172/1808567.
Der volle Inhalt der QuelleKollias, P., MA Miller, KB Widener, RT Marchand und TP Ackerman. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar. Office of Scientific and Technical Information (OSTI), Dezember 2005. http://dx.doi.org/10.2172/948524.
Der volle Inhalt der QuelleKB Widener und K Johnson. Millimeter Wave Cloud Radar (MMCR) Handbook. Office of Scientific and Technical Information (OSTI), Januar 2005. http://dx.doi.org/10.2172/948372.
Der volle Inhalt der QuelleSekelsky, Stephen M. Millimeter-Wave Radar Cloud Measurements and Data Analysis for Satellite Validation. Fort Belvoir, VA: Defense Technical Information Center, Mai 1998. http://dx.doi.org/10.21236/ada398479.
Der volle Inhalt der QuelleLevitt, Larry J. Design of a Millimeter Wave Data Link for a Radar Guided Missile. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada397366.
Der volle Inhalt der QuellePazmany, A. L., S. M. Sekelsky und R. E. McIntosh. Second annual progress report of the Millimeter Wave Cloud Profiling Radar System (CPRS). Office of Scientific and Technical Information (OSTI), Juni 1992. http://dx.doi.org/10.2172/10160247.
Der volle Inhalt der QuellePazmany, A. L., S. M. Sekelsky und R. E. McIntosh. Second annual progress report of the Millimeter Wave Cloud Profiling Radar System (CPRS). Office of Scientific and Technical Information (OSTI), Juni 1992. http://dx.doi.org/10.2172/7280059.
Der volle Inhalt der QuelleWellman, Ronald, Geoff Goldman, Jeffrey Silvious und David Hutchins. Analyses of Millimeter Wave Radar Low-Angle Ground-Clutter Measurements for European-Like and Desert Environments. Fort Belvoir, VA: Defense Technical Information Center, Juli 1996. http://dx.doi.org/10.21236/ada311771.
Der volle Inhalt der Quelle