Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microwave networks“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microwave networks" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Microwave networks"
Son, Wonhyung, Won-Kwang Park und Seong-Ho Son. „A Neural Network-Based Microwave Imaging Method for Object Localization“. Journal of Electromagnetic Engineering and Science 22, Nr. 5 (30.09.2022): 576–79. http://dx.doi.org/10.26866/jees.2022.5.r.125.
Der volle Inhalt der QuelleStepanets, I. V., V. A. Stepanets, E. M. Zaychik und S. M. Odoevsky. „FEATURES OF THE APPLICATION AND PLANNING OF THE MICROWAVE TRANSMISSION IN THE 5th GENERATION NETWORKS“. Informatization and communication, Nr. 3 (24.05.2019): 77–83. http://dx.doi.org/10.34219/2078-8320-2019-10-3-77-83.
Der volle Inhalt der QuelleSemennikov, Anton V. „MICROWAVE ELECTRONICS TECHNOLOGIES FOR 5G AND 6G WIRELESS NETWORKS“. EKONOMIKA I UPRAVLENIE: PROBLEMY, RESHENIYA 9/6, Nr. 150 (2024): 176–84. http://dx.doi.org/10.36871/ek.up.p.r.2024.09.06.020.
Der volle Inhalt der QuelleOvereem, A., H. Leijnse und R. Uijlenhoet. „Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network“. Atmospheric Measurement Techniques Discussions 8, Nr. 8 (07.08.2015): 8191–230. http://dx.doi.org/10.5194/amtd-8-8191-2015.
Der volle Inhalt der QuelleKatkevičius, Andrius, Darius Plonis, Robertas Damaševičius und Rytis Maskeliūnas. „Trends of Microwave Devices Design Based on Artificial Neural Networks: A Review“. Electronics 11, Nr. 15 (28.07.2022): 2360. http://dx.doi.org/10.3390/electronics11152360.
Der volle Inhalt der QuelleWang, Lin, Guangying Wang und Jingxu Chen. „IOT-Based Injection-Locked Microwave Photonic Frequency Division Signal Processing“. Mobile Information Systems 2022 (27.09.2022): 1–10. http://dx.doi.org/10.1155/2022/1351399.
Der volle Inhalt der QuelleMilovanovic, Bratislav, Vera Markovic, Zlatica Marinkovic und Zoran Stankovic. „Some applications of neural networks in microwave modeling“. Journal of Automatic Control 13, Nr. 1 (2003): 39–46. http://dx.doi.org/10.2298/jac0301039m.
Der volle Inhalt der QuelleOvereem, Aart, Hidde Leijnse und Remko Uijlenhoet. „Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network“. Atmospheric Measurement Techniques 9, Nr. 5 (01.06.2016): 2425–44. http://dx.doi.org/10.5194/amt-9-2425-2016.
Der volle Inhalt der QuelleMu, Zhong Guo, Xue Lian Bai, Yi Ding Luo, Jian Ting Mei und Ming Hu Zhang. „Study on Microwave Curing of Polyurethane (PU)/Epoxy (EP) Interpenetrating Networks (IPN)“. Applied Mechanics and Materials 556-562 (Mai 2014): 649–52. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.649.
Der volle Inhalt der QuelleWang, Lulu. „Holographic Microwave Image Classification Using a Convolutional Neural Network“. Micromachines 13, Nr. 12 (23.11.2022): 2049. http://dx.doi.org/10.3390/mi13122049.
Der volle Inhalt der QuelleDissertationen zum Thema "Microwave networks"
Mohammad, Malik Adeel, und Saeed Muhammad Sheharyar. „Load Balancing in Microwave Networks“. Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121698.
Der volle Inhalt der QuelleMcKenzie, Wilfred. „Characterisation of microwave passive networks based on electromagnetic analysis“. Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278080.
Der volle Inhalt der QuelleWang, Fang. „Knowledge based neural networks for microwave modeling and design“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ37081.pdf.
Der volle Inhalt der QuelleDias, De Macedo Filho Antonio. „Microwave neural networks and fuzzy classifiers for ES systems“. Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244066.
Der volle Inhalt der QuelleWang, Fang Carleton University Dissertation Engineering Electronics. „Knowledge based neural networks for microwave modeling and design“. Ottawa, 1998.
Den vollen Inhalt der Quelle findenBasarudin, Hafiz. „Development of a heterogeneous microwave network, fade simulation tool applicable to networks that span Europe“. Thesis, University of Hull, 2012. http://hydra.hull.ac.uk/resources/hull:5774.
Der volle Inhalt der QuelleMuñoz-Arcos, Christian Daniel. „Optical Microwave Signal Generation for Data Transmission in Optical Networks“. Thesis, Toulouse, ISAE, 2020. http://www.theses.fr/2020ESAE0013.
Der volle Inhalt der QuelleThe massive growth of telecommunication services and the increasing global data traffic boostthe development, implementation, and integration of different networks for data transmission.An example of this development is the optical fiber networks, responsible today for theinter-continental connection through long-distance links and high transfer rates. The opticalnetworks, as well as the networks supported by other transmission media, use electricalsignals at specific frequencies for the synchronization of the network elements. The qualityof these signals is usually determined in terms of phase noise. Due to the major impact ofthe phase noise over the system performance, its value should be minimized.The research work presented in this document describes the design and implementation ofan optoelectronic system for the microwave signal generation using a vertical-cavity surfaceemittinglaser (VCSEL) and its integration into an optical data transmission system. Consideringthat the proposed system incorporates a directly modulated VCSEL, a theoreticaland experimental characterization was developed based on the laser rate equations, dynamicand static measurements, and an equivalent electrical model of the active region. This proceduremade possible the extraction of some VCSEL intrinsic parameters, as well as thevalidation and simulation of the VCSEL performance under specific modulation conditions.The VCSEL emits in C-band, this wavelength was selected because it is used in long-haullinks. The proposed system is a self-initiated oscillation system caused by internal noise sources,which includes a VCSEL modulated in large signal to generate optical pulses (gain switching).The optical pulses, and the optical frequency comb associated, generate in electricaldomain simultaneously a fundamental frequency (determined by a band-pass filter) and severalharmonics. The phase noise measured at 10 kHz from the carrier at 1.25 GHz was -127.8dBc/Hz, and it is the lowest value reported in the literature for this frequency and architecture.Both the jitter and optical pulse width were determined when different resonantcavities and polarization currents were employed. The lowest pulse duration was 85 ps andwas achieved when the fundamental frequency was 2.5 GHz. As for the optical frequencycomb, it was demonstrated that its flatness depends on the electrical modulation conditions.The flattest profiles are obtained when the fundamental frequency is higher than the VCSELrelaxation frequency. Both the electrical and the optical output of the system were integrated into an optical transmitter.The electrical signal provides the synchronization of the data generating equipment,whereas the optical pulses are employed as an optical carrier. Data transmissions at 155.52Mb/s, 622.08 Mb/s and 1.25 Gb/s were experimentally validated. It was demonstrated thatthe fundamental frequency and harmonics could be extracted from the optical data signaltransmitted by a band-pass filter. It was also experimentally proved that the pulsed returnto-zero (RZ) transmitter at 1.25 Gb/s, achieves bit error rates (BER) lower than 10−9 whenthe optical power at the receiver is higher than -33 dBm. la plus faible, 85 ps, a été obtenue lorsque la fréquence fondamentale du système était de 2,5 GHz. En ce qui concerne le peigne de fréquences optiques, il a été démontré que la formedu peigne dépend des conditions de modulation électrique et que les profils les plus platssont obtenus lorsque la fréquence fondamentale est supérieure à la fréquence de relaxationdu VCSEL. Les sorties électrique et optique du système ont été intégrées dans un émetteur optique. Lesignal électrique permet la synchronisation de l’équipement responsable de la génération desdonnées, tandis que les impulsions optiques sont utilisées comme porteuse optique. La transmissionde données à 155,52 Mb/s, 622,08 Mb/s et 1,25 Gb/s a été validée expérimentalement
Hedrick, Jeffrey C. „High performance polymeric networks and thermoplastic blends : microwave versus thermal processing /“. Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-07122007-103925/.
Der volle Inhalt der QuelleVita. Abstract. No film copy made for this title. Includes bibliographical references (leaves 243-254). Also available via the Internet.
Lochtie, Gail D. „Propagation at microwave frequencies in the presence of tropospheric stratified layers“. Thesis, University of Essex, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303451.
Der volle Inhalt der QuellePratap, Rana Jitendra. „Design and Optimization of Microwave Circuits and Systems Using Artificial Intelligence Techniques“. Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7225.
Der volle Inhalt der QuelleBücher zum Thema "Microwave networks"
Strobel, Otto, Hrsg. Optical and Microwave Technologies for Telecommunication Networks. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119114857.
Der volle Inhalt der QuelleLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. 2. Aufl. New York: McGraw-Hill, 2010.
Den vollen Inhalt der Quelle findenLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. 2. Aufl. New York: McGraw-Hill, 2010.
Den vollen Inhalt der Quelle findenLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. 2. Aufl. New York: McGraw-Hill, 2010.
Den vollen Inhalt der Quelle findenLo, Jonathan O. Y. Time domain finite element analysis of microwave planar networks. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Den vollen Inhalt der Quelle findenFeher, Kamilo. Digital communications: Microwave applications. New Delhi: Prentice-Hall, 1987.
Den vollen Inhalt der Quelle findenWincza, Krzysztof. Design of microwave networks with broadband directional couplers: Projektowanie układów mikrofalowych wykorzystujących szerokopasmowe sprzęgacze kierunkowe. Krakow: AGH University of Science and Technology Press, 2011.
Den vollen Inhalt der Quelle findenDobrowolski, Janusz. Computer-aided analysis, modeling, and design of microwave networks: The wave approach. Boston: Artech House, 1996.
Den vollen Inhalt der Quelle findenJ, Reddy C., und Langley Research Center, Hrsg. Application of FEM to estimate complex permittivity of dielectric material at microwave frequency using waveguide measurements. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Den vollen Inhalt der Quelle findenCataldo, Andrea. Broadband Reflectometry for Enhanced Diagnostics and Monitoring Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Microwave networks"
Benson, F. A., und T. M. Benson. „Microwave networks“. In Fields, Waves and Transmission Lines, 150–83. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-2382-2_6.
Der volle Inhalt der QuelleNadiv, Ron. „Microwave Backhaul Networks“. In Convergence of Mobile and Stationary Next-Generation Networks, 163–202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470630976.ch6.
Der volle Inhalt der QuelleQin, Juehang, und A. Hubler. „Reducing Microwave Absorption with Chaotic Microwaves“. In Lecture Notes in Networks and Systems, 119–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52621-8_11.
Der volle Inhalt der QuelleNoghanian, Sima, Abas Sabouni, Travis Desell und Ali Ashtari. „Inclusion of A Priori Information Using Neural Networks“. In Microwave Tomography, 87–141. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0752-6_5.
Der volle Inhalt der QuelleMartín, Ferran, Jordi Naqui, Francisco Medina, Lei Zhu und Jiasheng Hong. „INTRODUCTION TO BALANCED TRANSMISSION LINES, CIRCUITS, AND NETWORKS“. In Balanced Microwave Filters, 1–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119238386.ch1.
Der volle Inhalt der QuelleRaghunandan, Krishnamurthy. „Microwave and Millimeter-Wave Links“. In Introduction to Wireless Communications and Networks, 277–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92188-0_14.
Der volle Inhalt der QuelleAl-Zoubi, Abdallah. „Flipping the Microwave Engineering Class“. In Lecture Notes in Networks and Systems, 809–19. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26876-2_77.
Der volle Inhalt der QuelleKoul, Shiban Kishen, und Sukomal Dey. „Micromachined Microwave Phase Shifters“. In Radio Frequency Micromachined Switches, Switching Networks, and Phase Shifters, 77–100. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781351021340-5.
Der volle Inhalt der QuelleSisodiya, Divya, Yash Bahuguna, Akanksha Srivastava und Gurjit Kaur. „Green Microwave and Satellite Communication Systems“. In Green Communication Technologies for Future Networks, 231–52. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003264477-13.
Der volle Inhalt der QuelleGuglielmi, M. „Microwave Networks and the Method of Moments“. In Applied Computational Electromagnetics, 131–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59629-2_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Microwave networks"
Masud, Md Abdullah Al, Alazar Araia, Yuxin Wang, Jianli Hu und Yuhe Tian. „Machine Learning-Aided Process Design for Microwave-Assisted Ammonia Production“. In Foundations of Computer-Aided Process Design, 316–21. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.121422.
Der volle Inhalt der QuelleGemmato, Valentina, Filippo Scotti, Federico Camponeschi, Luca Rinaldi, Marco Bartocci, Claudio Porzi und Paolo Ghelfi. „Microwave Photonics Optical Filter for ESM Systems“. In 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10647818.
Der volle Inhalt der QuellePIRKL, W. „MICROWAVE ELECTRONICS – MICROWAVE NETWORKS“. In Proceedings of the Joint US-CERN-Japan International School. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447324_0004.
Der volle Inhalt der QuelleLembo, Leonardo, Salvatore Maresca, Giovanni Serafino, Filippo Scotti, Antonio Malacarne, Paolo Ghelfi und Antonella Bogoni. „Microwave Photonics for a Radar Network“. In Photonic Networks and Devices. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/networks.2019.neth2d.2.
Der volle Inhalt der QuelleKodjo, Alvinice, Brigitte Jaumard, Napoleao Nepomuceno, Mejdi Kaddour und David Coudert. „Dimensioning microwave wireless networks“. In 2015 IEEE International Conference on Signal Processing for Communications (ICC). IEEE, 2015. http://dx.doi.org/10.1109/icc.2015.7248751.
Der volle Inhalt der QuelleMinasian, R. A., X. Yi und L. Li. „Microwave photonic processing of high-speed microwave signals“. In 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE, 2016. http://dx.doi.org/10.1109/icton.2016.7550273.
Der volle Inhalt der QuelleZvonimir Vrazic, Dubravko Zagar und Sonja Grgic. „Adaptive modulation in microwave networks“. In ELMAR 2007. IEEE, 2007. http://dx.doi.org/10.1109/elmar.2007.4418841.
Der volle Inhalt der QuelleCharalambous, Georgios, und Stavros Iezekiel. „Microwave Photonic Linear Frequency Networks“. In 2019 21st International Conference on Transparent Optical Networks (ICTON). IEEE, 2019. http://dx.doi.org/10.1109/icton.2019.8840536.
Der volle Inhalt der QuelleGloba, L., Y. Demidova und M. Ternovoy. „Network Anomaly Detection using Neural Networks“. In 2006 16th International Crimean Microwave and Telecommunication Technology. IEEE, 2006. http://dx.doi.org/10.1109/crmico.2006.256445.
Der volle Inhalt der QuelleCarpintero, Guillermo, Muhsin Ali, Luis Enrique García-Muñoz, Frédéric van Dijk, Robinson Cruzoe Guzman, Douwe H. Geuzebroek, Chris G. H. Roeloffzen, David de Felipe und Norbert Keil. „Advances in hybrid integrated microwave photonic systems for millimeter- and Terahertz wave generation“. In Photonic Networks and Devices. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/networks.2020.netu3b.4.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Microwave networks"
Singh, D., M. J. Salter und N. M. Ridler. Comparison of Vector Network Analyser (VNA) calibration techniques at microwave frequencies. National Physical Laboratory, September 2020. http://dx.doi.org/10.47120/npl.tqe14.
Der volle Inhalt der QuelleWong, N. C. Optical-to-Microwave Frequency Chain Utilizing a Two-Laser-Based Optical Parametric Oscillator Network,. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada300860.
Der volle Inhalt der QuelleDuda, L. E. User manual for CSP{_}VANA: A check standards measurement and database program for microwave network analyzers. Office of Scientific and Technical Information (OSTI), Oktober 1997. http://dx.doi.org/10.2172/541945.
Der volle Inhalt der Quelle