Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microwave holography“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microwave holography" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Microwave holography"
Shang, Guanyu, Zhuochao Wang, Haoyu Li, Kuang Zhang, Qun Wu, Shah Burokur und Xumin Ding. „Metasurface Holography in the Microwave Regime“. Photonics 8, Nr. 5 (22.04.2021): 135. http://dx.doi.org/10.3390/photonics8050135.
Der volle Inhalt der QuelleRochblatt, D. J., und B. L. Seidel. „Microwave antenna holography“. IEEE Transactions on Microwave Theory and Techniques 40, Nr. 6 (Juni 1992): 1294–300. http://dx.doi.org/10.1109/22.141363.
Der volle Inhalt der QuelleGaikovich, Konstantin P., Petr K. Gaikovich, Yelena S. Maksimovitch und Vitaly A. Badeev. „Subsurface Near-Field Microwave Holography“. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9, Nr. 1 (Januar 2016): 74–82. http://dx.doi.org/10.1109/jstars.2015.2443035.
Der volle Inhalt der QuelleGuler, M. G., und E. B. Joy. „High resolution spherical microwave holography“. IEEE Transactions on Antennas and Propagation 43, Nr. 5 (Mai 1995): 464–72. http://dx.doi.org/10.1109/8.384190.
Der volle Inhalt der QuelleRazevig V. V., Bugaev A. S. und Ivashov S. I. „Comparison of Back-Scattering and Forward-Scattering Methods in Short Range Microwave Imaging Systems“. Technical Physics 67, Nr. 11 (2022): 1512. http://dx.doi.org/10.21883/tp.2022.11.55184.173-22.
Der volle Inhalt der QuelleRavan, Maryam, Reza K. Amineh und Natalia K. Nikolova. „Two-dimensional near-field microwave holography“. Inverse Problems 26, Nr. 5 (27.04.2010): 055011. http://dx.doi.org/10.1088/0266-5611/26/5/055011.
Der volle Inhalt der QuelleWANG, JinQing, XiuTing ZUO, Kesteven MICHAEL, RongBing ZHAO, LinFeng YU, YongBin JIANG, Wei GOU, YongChen JIANG und Wen GUO. „TM65 m radio telescope microwave holography“. SCIENTIA SINICA Physica, Mechanica & Astronomica 47, Nr. 9 (14.06.2017): 099502. http://dx.doi.org/10.1360/sspma2016-00415.
Der volle Inhalt der QuelleSu, Deer, Xinwei Wang, Guanyu Shang, Xumin Ding, Shah Nawaz Burokur, Jian Liu und Haoyu Li. „Amplitude-phase modulation metasurface hologram with inverse angular spectrum diffraction theory“. Journal of Physics D: Applied Physics 55, Nr. 23 (09.03.2022): 235102. http://dx.doi.org/10.1088/1361-6463/ac5699.
Der volle Inhalt der QuelleTSUCHIYA, Hayato, Naofumi IWAMA, Soichiro YAMAGUCHI, Ryota TAKENAKA und Mayuko KOGA. „Feasibility Study of Holography Using Microwave Scattering“. Plasma and Fusion Research 14 (25.09.2019): 3402146. http://dx.doi.org/10.1585/pfr.14.3402146.
Der volle Inhalt der QuelleLi, Shaozhong, und J. B. Khurgin. „Microwave-developed three-dimensional real-time holography“. Optics Letters 18, Nr. 21 (01.11.1993): 1855. http://dx.doi.org/10.1364/ol.18.001855.
Der volle Inhalt der QuelleDissertationen zum Thema "Microwave holography"
Guler, Michael George. „Spherical microwave holography“. Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/15055.
Der volle Inhalt der QuelleChalodhorn, Wonchalerm. „Use of microwave lenses in phase retrieval microwave holography of reflector antennas“. Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/14909.
Der volle Inhalt der QuelleMarín, Garcia Jordi. „Off-axis holography in microwave imaging systems“. Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/285129.
Der volle Inhalt der QuelleIn past decades research in terahertz technology was solely motivated by instruments for topics such as astrophysics, planetary and earth sciences. Molecular line spectroscopy detection, identification and mapping of thermal emission and absorption signatures from low pressure gases comprised the main focus for most scientific requirements and motivated the development of terahertz instrumentation and technology. In spite of the scientific contributions of terahertz radiation, its spectrum is still one of the least used electromagnetics bands in commercial use. The unavailability of sources, sensors, sub-systems and instruments has been a cumbersome issue over the past years for its wide-spread use in commercial instrumentation. The combination of technological advances coming from the space-based community, along with the emergence of new applications, have managed to drive again the interest from both public and private sectors which has renown and skyrocketed the funding and research in terahertz applications. Aside from the aforementioned scientific interest, terahertz radiation has appealing characteristics such as good imaging resolution (as compared to lower frequencies), material penetration, spectroscopic capabilities, water absorption and low energy levels. The work of this thesis is part of a Spanish national research project called Terasense. The main focus of the project is to equip national academic research institutions with a completely new set of instrumentations and capabilities in order to advance towards the current state of the art in millimeter and sub-millimeter wave technologies. The main objective of this thesis is to explore the viability of microwave and millimeter-wave imaging systems based on intensity-only holographic techniques. This dissertation is mostly focused on the Off-Axis Holography technique. Not only from a theoretical perspective but specially from an actual implementation standpoint. In order to do so, different experimental setups and devices have been designed and manufactured. Iteration between hardware and software has created a framework for devising and testing different imaging techniques under consideration. The frequency range W-Band (75-110 GHz) has been chosen as the main goal for all systems under study, however different setups will first be constructed, characterized and tested at X-Band (8-12 GHz) in order to build up the expertise required to work at millimeter-wave frequencies.
Dahhan, A. K. „Real-time microwave holography using glow discharge detectors“. Thesis, Cardiff University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356739.
Der volle Inhalt der QuelleZhang, Tieren, University of Western Sydney, of Science Technology and Environment College und School of Engineering and Industrial Design. „Applications of microwave holography to the assessment of antennas and antenna arrays“. THESIS_CSTE_EID_Zhang_T.xml, 2001. http://handle.uws.edu.au:8081/1959.7/770.
Der volle Inhalt der QuelleDoctor of Philosophy (PhD)
Zhang, Tieren. „Applications of microwave holography to the assessment of antennas and antenna arrays“. Thesis, View thesis, 2001. http://handle.uws.edu.au:8081/1959.7/770.
Der volle Inhalt der QuelleZhang, Tieren. „Applications of microwave holography to the assessment of antennas and antenna arrays“. View thesis, 2001. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040330.103805/index.html.
Der volle Inhalt der Quelle"Submitted in fulfilment of requirements for the degree of Doctor of Philosophy, School of Engineering and Industrial Design, University of Western Sydney" Includes bibliography.
Janice, Brian A. „Differential Near Field Holography for Small Antenna Arrays“. Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/999.
Der volle Inhalt der QuelleRodriguez, Herrera Diego. „Antenna characterisation and optimal sampling constraints for breast microwave imaging systems with a novel wave speed propagation algorithm“. IEEE, 2014. http://hdl.handle.net/1993/31907.
Der volle Inhalt der QuelleFebruary 2017
Vachiramon, Pithawat. „Free-space optical communications with retro-reflecting acquisition and turbulence compensation“. Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:9e19fc21-8767-4d6f-9e75-be4527f5e650.
Der volle Inhalt der QuelleBücher zum Thema "Microwave holography"
P, Anderson A., und University of Sheffield. Department of Electronic and Electrical Engineering., Hrsg. Microwave holographic antenna: Metrology 1969-1985 : an historical compilation chronicling the development of microwave holographic antenna metrology. Sheffield: University of Sheffield Department of Electronic and Electrical Engineering, 1985.
Den vollen Inhalt der Quelle findenNikolova, Natalia K., Reza K. Amineh und Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Incorporated, John, 2019.
Den vollen Inhalt der Quelle findenNikolova, Natalia K., Reza K. Amineh und Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Incorporated, John, 2019.
Den vollen Inhalt der Quelle findenNikolova, Natalia K., Reza K. Amineh und Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Incorporated, John, 2019.
Den vollen Inhalt der Quelle findenNikolova, Natalia K., Reza K. Amineh und Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Limited, John, 2019.
Den vollen Inhalt der Quelle findenSchnars, Ulf, und Werner Jüptner. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer Berlin / Heidelberg, 2010.
Den vollen Inhalt der Quelle findenSchnars, Ulf, und Werner Jueptner. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer, 2004.
Den vollen Inhalt der Quelle findenSchnars, Ulf, und Werner Jüptner. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer London, Limited, 2005.
Den vollen Inhalt der Quelle findenWang, L. Basic Principles and Potential Applications of Holographic Microwave Imaging. ASME Press, 2016. http://dx.doi.org/10.1115/1.860434.
Der volle Inhalt der QuelleWang, Lulu. Basic Principles and Potential Applications of Holographic Microwave Imaging. American Society of Mechanical Engineers, The, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Microwave holography"
Iizuka, Keigo. „Applications of Microwave Holography“. In Engineering Optics, 335–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-69251-7_12.
Der volle Inhalt der QuelleIizuka, Keigo. „Applications of Microwave Holography“. In Springer Series in Optical Sciences, 313–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-540-36808-3_12.
Der volle Inhalt der QuelleIizuka, Keigo. „Applications of Microwave Holography“. In Engineering Optics, 313–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-07032-1_12.
Der volle Inhalt der QuelleWang, Jinqing, Lingfeng Yu, Wei Gou, Qinyuan Fan, Rongbin Zhao und Bo Xia. „Microwave Holography Measurement on Seshan 25m Parabolic Antenna and the Assessment of the Accuracy“. In Recent Advances in Computer Science and Information Engineering, 109–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25769-8_16.
Der volle Inhalt der QuelleRahmat-Samii, Y. „Antenna Diagnosis by Microwave Holographic Metrology“. In Electromagnetic Modelling and Measurements for Analysis and Synthesis Problems, 17–50. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3232-9_2.
Der volle Inhalt der QuelleJayanthy, Maniam, N. Selvanathan, M. Abu-Bakar, D. Smith, H. M. Elgabroun, P. M. Yeong und S. Senthil Kumar. „Microwave Holographic Imaging Technique for Tumour Detection“. In 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, 275–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68017-8_71.
Der volle Inhalt der QuelleAnderson, A. P., und M. F. Adams. „Holographic and Tomographic Imaging with Microwaves and Ultrasound“. In Inverse Methods in Electromagnetic Imaging, 1077–105. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5271-3_23.
Der volle Inhalt der QuelleAnderson, A. P., und M. F. Adams. „Holographic and Tomographic Imaging with Microwaves and Ultrasound“. In Inverse Methods in Electromagnetic Imaging, 1077–105. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9444-3_62.
Der volle Inhalt der QuelleWu, Gaoyang, Yuyong Xiong, Zhaoyu Liu, Guang Meng und Zhike Peng. „Full-Field Out-of-Plane Displacement Measurement Using Microwave Holographic Interferometry“. In Proceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023), 175–84. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-49413-0_13.
Der volle Inhalt der QuelleDuan, Yuhu. „Microwave Holographic Metrology of the Surface Accuracy of Reflector Antenna—Simulation Method“. In Lecture Notes in Electrical Engineering, 103–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44687-4_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Microwave holography"
Kuwahara, Yoshihiko. „Microwave Holography for Breast Imaging“. In 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). IEEE, 2020. http://dx.doi.org/10.1109/rfit49453.2020.9226233.
Der volle Inhalt der QuelleWilson, Scott A., und Ram M. Narayanan. „Compressive wideband microwave radar holography“. In SPIE Defense + Security, herausgegeben von Kenneth I. Ranney und Armin Doerry. SPIE, 2014. http://dx.doi.org/10.1117/12.2050131.
Der volle Inhalt der QuellePopov, A., I. Prokopovich und D. Edemskii. „Experimental implementation of microwave subsurface holography“. In 2016 Days on Diffraction (DD). IEEE, 2016. http://dx.doi.org/10.1109/dd.2016.7756870.
Der volle Inhalt der QuelleRavan, M., Reza K. Amineh und Natalia K. Nikolova. „Microwave holography for near-field imaging“. In 2010 IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting. IEEE, 2010. http://dx.doi.org/10.1109/aps.2010.5561682.
Der volle Inhalt der QuelleWang, Lulu, Ray Simpkin und A. M. Al-Jumaily. „Holographic Microwave Imaging Array for Early Breast Cancer Detection“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85910.
Der volle Inhalt der QuelleBabbitt, W. R. „Microwave signal processing with spatial-spectral holography“. In 2005 IEEE LEOS Annual Meeting. IEEE, 2005. http://dx.doi.org/10.1109/leos.2005.1548268.
Der volle Inhalt der QuelleZhuravlev, Andrei, Sergey Ivashov, Vladimir Razevig, Igor Vasiliev und Timothy Bechtel. „Shallow depth subsurface imaging with microwave holography“. In SPIE Defense + Security, herausgegeben von Steven S. Bishop und Jason C. Isaacs. SPIE, 2014. http://dx.doi.org/10.1117/12.2051492.
Der volle Inhalt der QuelleIvashov, Sergey I., Vladimir V. Razevig, Timothy D. Bechtel, Igor A. Vasiliev, Lorenzo Capineri und Andrey V. Zhuravlev. „Microwave holography for NDT of dielectric structures“. In 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS). IEEE, 2015. http://dx.doi.org/10.1109/comcas.2015.7360372.
Der volle Inhalt der QuelleAhmed, Aijaz, Vineeta Kumari und Gyanendra Sheoran. „Concealed Object Detection using Microwave Transmission Holography“. In 2022 International Conference on Intelligent Technologies (CONIT). IEEE, 2022. http://dx.doi.org/10.1109/conit55038.2022.9847723.
Der volle Inhalt der QuelleTajik, D., A. D. Pitcher, D. S. Shumakov, N. K. Nikolova und J. W. Bandler. „Enhancing Quantitative Microwave Holography in Tissue Imaging“. In 12th European Conference on Antennas and Propagation (EuCAP 2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.0784.
Der volle Inhalt der Quelle