Auswahl der wissenschaftlichen Literatur zum Thema „Microwave holography“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microwave holography" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Microwave holography"

1

Shang, Guanyu, Zhuochao Wang, Haoyu Li, Kuang Zhang, Qun Wu, Shah Burokur und Xumin Ding. „Metasurface Holography in the Microwave Regime“. Photonics 8, Nr. 5 (22.04.2021): 135. http://dx.doi.org/10.3390/photonics8050135.

Der volle Inhalt der Quelle
Annotation:
Hologram technology has attracted a great deal of interest in a wide range of optical fields owing to its potential use in future optical applications, such as holographic imaging and optical data storage. Although there have been considerable efforts to develop holographic technologies using conventional optics, critical issues still hinder their future development. A metasurface, as an emerging multifunctional device, can manipulate the phase, magnitude, polarization and resonance properties of electromagnetic fields within a sub-wavelength scale, opening up an alternative for a compact holographic structure and high imaging quality. In this review paper, we first introduce the development history of holographic imaging and metasurfaces, and demonstrate some applications of metasurface holography in the field of optics. We then summarize the latest developments in holographic imaging in the microwave regime. These functionalities include phase- and amplitude-based design, polarization multiplexing, wavelength multiplexing, spatial asymmetric propagation, and a reconfigurable mechanism. Finally, we conclude briefly on this rapidly developing research field and present some outlooks for the near future.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rochblatt, D. J., und B. L. Seidel. „Microwave antenna holography“. IEEE Transactions on Microwave Theory and Techniques 40, Nr. 6 (Juni 1992): 1294–300. http://dx.doi.org/10.1109/22.141363.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gaikovich, Konstantin P., Petr K. Gaikovich, Yelena S. Maksimovitch und Vitaly A. Badeev. „Subsurface Near-Field Microwave Holography“. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9, Nr. 1 (Januar 2016): 74–82. http://dx.doi.org/10.1109/jstars.2015.2443035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Guler, M. G., und E. B. Joy. „High resolution spherical microwave holography“. IEEE Transactions on Antennas and Propagation 43, Nr. 5 (Mai 1995): 464–72. http://dx.doi.org/10.1109/8.384190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Razevig V. V., Bugaev A. S. und Ivashov S. I. „Comparison of Back-Scattering and Forward-Scattering Methods in Short Range Microwave Imaging Systems“. Technical Physics 67, Nr. 11 (2022): 1512. http://dx.doi.org/10.21883/tp.2022.11.55184.173-22.

Der volle Inhalt der Quelle
Annotation:
Microwave imaging technique allows obtaining images of hidden objects in structures and media using microwaves. Usually in short-range microwave imaging systems, the back-scattered signal is used, when a combined transmit-receive antenna scans over a plane, forming a two-dimensional synthesized aperture, while the signal reflected from the object of observation is recorded, as a result of which a microwave hologram of the object is formed. The second option involves registering the forward-scattered signal, when the transmitting and receiving antennas are located on opposite sides of the object and scan synchronously. The purpose of this work is a theoretical and experimental comparison of these two sounding options, identifying the advantages and disadvantages of each option, taking into account the features that arise when solving various problems of microwave imaging. Keywords: microwave holography, mivrowave image, back-scattered signal, forward-scattered signal, range resolution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ravan, Maryam, Reza K. Amineh und Natalia K. Nikolova. „Two-dimensional near-field microwave holography“. Inverse Problems 26, Nr. 5 (27.04.2010): 055011. http://dx.doi.org/10.1088/0266-5611/26/5/055011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

WANG, JinQing, XiuTing ZUO, Kesteven MICHAEL, RongBing ZHAO, LinFeng YU, YongBin JIANG, Wei GOU, YongChen JIANG und Wen GUO. „TM65 m radio telescope microwave holography“. SCIENTIA SINICA Physica, Mechanica & Astronomica 47, Nr. 9 (14.06.2017): 099502. http://dx.doi.org/10.1360/sspma2016-00415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Su, Deer, Xinwei Wang, Guanyu Shang, Xumin Ding, Shah Nawaz Burokur, Jian Liu und Haoyu Li. „Amplitude-phase modulation metasurface hologram with inverse angular spectrum diffraction theory“. Journal of Physics D: Applied Physics 55, Nr. 23 (09.03.2022): 235102. http://dx.doi.org/10.1088/1361-6463/ac5699.

Der volle Inhalt der Quelle
Annotation:
Abstract Designed metasurfaces, composed of a two-dimensional array of meta-atoms, provide an alternative approach to achieving efficient electromagnetic wave manipulation. Metasurface holography is an emerging and promising imaging technology, with improved image quality and spatial resolution compared to traditional holography. Many devices are fabricated only by coding specific phase responses of the designed metasurfaces. However, the modulation of both the amplitude and phase responses of electromagnetic waves can significantly improve the quality of the holographic image. In this paper, we employ bi-layered split rings as meta-atoms, which can fully control the transmission amplitude and phase independently. Furthermore, we present an algorithm based on the inverse angular spectrum diffraction theory to obtain the amplitude and phase information for the shape and arrangement of the meta-atoms. The proof-of-concept experiments in the microwave regime demonstrate that the inverse angular spectrum diffraction theory shows better image quality than the conventional Gerchberg-Saxton algorithm, especially when the number of meta-atoms is the same or even slightly fewer. The proposed approach provides an innovative and effective method for hologram design and expands the route to versatile applications related to holographic technologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

TSUCHIYA, Hayato, Naofumi IWAMA, Soichiro YAMAGUCHI, Ryota TAKENAKA und Mayuko KOGA. „Feasibility Study of Holography Using Microwave Scattering“. Plasma and Fusion Research 14 (25.09.2019): 3402146. http://dx.doi.org/10.1585/pfr.14.3402146.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Li, Shaozhong, und J. B. Khurgin. „Microwave-developed three-dimensional real-time holography“. Optics Letters 18, Nr. 21 (01.11.1993): 1855. http://dx.doi.org/10.1364/ol.18.001855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Microwave holography"

1

Guler, Michael George. „Spherical microwave holography“. Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/15055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chalodhorn, Wonchalerm. „Use of microwave lenses in phase retrieval microwave holography of reflector antennas“. Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/14909.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Marín, Garcia Jordi. „Off-axis holography in microwave imaging systems“. Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/285129.

Der volle Inhalt der Quelle
Annotation:
En las pasadas décadas, la investigación en tecnología de terahercios fue únicamente motivada por instrumentación para los campos de astrofísica y ciencias de la tierra. La principal línea de investigación de estos campos comprende la detección, identificación y mapeo mediante espectroscopia molecular de bandas de emisión y absorción de gases a baja presión. Este campo fue el mayor foco de desarrollo que permitió en primer lugar el desarrollo de instrumentación y tecnología a bandas de terahercios. En contraposición con su uso en campos científicos, la radiación de terahercios es una de las bandas de radio-frecuencia menos usadas en el ámbito comercial. La escasez de fuentes, sensores, sub-sistemas e instrumentos ha dificultado en los últimos años la proliferación de aplicaciones para un mayor público de consumo. La combinación de los últimos avances tecnológicos provenientes del campo científico, así como el descubrimiento de nuevas aplicaciones ha despertado de nuevo el interés por este campo, lo que ha supuesto un nuevo impulso económico para el desarrollo a estas frecuencias tanto a nivel público como privado. Además del mencionado interés científico, la radiación de terahercios tiene características muy atractivas como por ejemplo una buena resolución espacial (comparada con menores frecuencias), penetración en materiales, capacidades espectroscópicas, absorción por humedad y niveles bajos de energía. El trabajo desarrollado en esta tesis es parte de un proyecto de investigación a nivel nacional Español denominado Terasense. El interés principal de este proyecto es equipar las instituciones de investigación académicas con un nuevo conjunto de instrumentación y capacidades para poder desarrollar proyectos en el estado del arte en el campo de ondas milimétricas y sub-milimétricas. El objetivo principal de esta tesis es explorar la viabilidad de sistemas de imagen en microondas y ondas milimétricas basados en técnicas holográficas mediante medidas de intensidad. En este documenta se estudia principalmente el uso de la técnica holográfica con referencia desplazada. No solo desde un punto de vista teórico sino especialmente desde un punto de vista experimental y práctico. En la tesis, diferentes experimentos y dispositivos son simulados, diseñados e implementados. La ida y vuelta entre software y hardware ha permitido la creación de un marco de desarrollo para el test de las diferentes técnicas de imagen estudiadas. El rango de frecuencia escogido como meta para este proyecto es la banda de frecuencia W (75-110 GHz). Sin embargo, muchos experimentos han sido desarrollados primero en banda X (8-12 GHz) para desarrollar la experiencia necesaria requerida para trabajar a frecuencias superiores en el rango de las ondas milimétricas.
In past decades research in terahertz technology was solely motivated by instruments for topics such as astrophysics, planetary and earth sciences. Molecular line spectroscopy detection, identification and mapping of thermal emission and absorption signatures from low pressure gases comprised the main focus for most scientific requirements and motivated the development of terahertz instrumentation and technology. In spite of the scientific contributions of terahertz radiation, its spectrum is still one of the least used electromagnetics bands in commercial use. The unavailability of sources, sensors, sub-systems and instruments has been a cumbersome issue over the past years for its wide-spread use in commercial instrumentation. The combination of technological advances coming from the space-based community, along with the emergence of new applications, have managed to drive again the interest from both public and private sectors which has renown and skyrocketed the funding and research in terahertz applications. Aside from the aforementioned scientific interest, terahertz radiation has appealing characteristics such as good imaging resolution (as compared to lower frequencies), material penetration, spectroscopic capabilities, water absorption and low energy levels. The work of this thesis is part of a Spanish national research project called Terasense. The main focus of the project is to equip national academic research institutions with a completely new set of instrumentations and capabilities in order to advance towards the current state of the art in millimeter and sub-millimeter wave technologies. The main objective of this thesis is to explore the viability of microwave and millimeter-wave imaging systems based on intensity-only holographic techniques. This dissertation is mostly focused on the Off-Axis Holography technique. Not only from a theoretical perspective but specially from an actual implementation standpoint. In order to do so, different experimental setups and devices have been designed and manufactured. Iteration between hardware and software has created a framework for devising and testing different imaging techniques under consideration. The frequency range W-Band (75-110 GHz) has been chosen as the main goal for all systems under study, however different setups will first be constructed, characterized and tested at X-Band (8-12 GHz) in order to build up the expertise required to work at millimeter-wave frequencies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dahhan, A. K. „Real-time microwave holography using glow discharge detectors“. Thesis, Cardiff University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356739.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Tieren, University of Western Sydney, of Science Technology and Environment College und School of Engineering and Industrial Design. „Applications of microwave holography to the assessment of antennas and antenna arrays“. THESIS_CSTE_EID_Zhang_T.xml, 2001. http://handle.uws.edu.au:8081/1959.7/770.

Der volle Inhalt der Quelle
Annotation:
Gabor's original holography, which is the basic theory of modern microwave holographic techniques, is introduced. By computer simulations, it is demonstrated that the conventional holographic approach can be used as a tool to reconstruct aperture field distributions of an antenna with some constraints. Computer simulations of the theory and technique of the improved microwave holographic approach originally introduced by Rahmat-Samii et al. are carried out. The results show that it can be used for surface distortion diagnosis of large reflector antennas. The physical optics integral formulation is derived by general solutions of the vector wave equations. The necessary theory , which is needed to reconstruct the aperture field from near-field measurements both in a rectangular coordinate system and in a cylindrical coordinate system is developed. It is based on the plane wave spectrum and the vector wave modal expansion of an electromagnetic field. By using a simple dipole and other well-defined antennas, computer simulations have been performed. The results show that the technique is rigorous and applicable. It is also demonstrated that the sampling intervals and the number of sampling points should be chosen carefully in order to obtain a satisfactory resolution of the reconstructed aperture field. Furthermore, the simulations carried out in this work reveal that the real aperture field distribution of a dipole antenna has a maximum point at each end of the antenna. This characteristic can only be obtained at a very close distance to the antenna. This study also reveals the significant contributions of the evanescent waves to the aperture reconstruction. A simple but effective method for examining the evanescent waves from the measured near-field is also presented. By using dipoles and other well known antennas and antenna arrays, the experiments were carried out. The experimental results provide reasonable good agreements with the simulations. The technique proposed is effective and accurate.
Doctor of Philosophy (PhD)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhang, Tieren. „Applications of microwave holography to the assessment of antennas and antenna arrays“. Thesis, View thesis, 2001. http://handle.uws.edu.au:8081/1959.7/770.

Der volle Inhalt der Quelle
Annotation:
Gabor's original holography, which is the basic theory of modern microwave holographic techniques, is introduced. By computer simulations, it is demonstrated that the conventional holographic approach can be used as a tool to reconstruct aperture field distributions of an antenna with some constraints. Computer simulations of the theory and technique of the improved microwave holographic approach originally introduced by Rahmat-Samii et al. are carried out. The results show that it can be used for surface distortion diagnosis of large reflector antennas. The physical optics integral formulation is derived by general solutions of the vector wave equations. The necessary theory , which is needed to reconstruct the aperture field from near-field measurements both in a rectangular coordinate system and in a cylindrical coordinate system is developed. It is based on the plane wave spectrum and the vector wave modal expansion of an electromagnetic field. By using a simple dipole and other well-defined antennas, computer simulations have been performed. The results show that the technique is rigorous and applicable. It is also demonstrated that the sampling intervals and the number of sampling points should be chosen carefully in order to obtain a satisfactory resolution of the reconstructed aperture field. Furthermore, the simulations carried out in this work reveal that the real aperture field distribution of a dipole antenna has a maximum point at each end of the antenna. This characteristic can only be obtained at a very close distance to the antenna. This study also reveals the significant contributions of the evanescent waves to the aperture reconstruction. A simple but effective method for examining the evanescent waves from the measured near-field is also presented. By using dipoles and other well known antennas and antenna arrays, the experiments were carried out. The experimental results provide reasonable good agreements with the simulations. The technique proposed is effective and accurate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhang, Tieren. „Applications of microwave holography to the assessment of antennas and antenna arrays“. View thesis, 2001. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040330.103805/index.html.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph.D.) -- University of Western Sydney, 2001.
"Submitted in fulfilment of requirements for the degree of Doctor of Philosophy, School of Engineering and Industrial Design, University of Western Sydney" Includes bibliography.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Janice, Brian A. „Differential Near Field Holography for Small Antenna Arrays“. Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/999.

Der volle Inhalt der Quelle
Annotation:
"Near-field diagnosis of antenna arrays is often done using microwave holography; however, the technique of near-field to near-field back-propagation quickly loses its accuracy with measurements taken farther than one wavelength from the aperture. The loss of accuracy is partially due to windowing, but may also be attributed to the decay of evanescent modes responsible for the fine distribution of the fields close to the array. In an effort to achieve better resolution, the difference between these two phase-synchronized near-field measurements is used and propagated back. The performance of such a method is established for different conditions; the extension of this technique to the calibration of small antenna arrays is also discussed. The method is based on the idea of differential backpropagation using the measured/simulated/analytical data in the near field. After completing the corresponding literature search authors have found that the same idea was first proposed by P. L. Ransom and R. Mittra in 1971, at that point with the Univ. of Illinois. This method is basically the same, but it includes a few distinct features: 1. The near field of a (faulty) array under test is measured at via a near field antenna range. 2. The template (non-faulty) near field of an array is simulated numerically (full-wave FDTD solver or FEM Ansoft/ANSYS HFSS solver) at the same distance - an alternative is to use measurements for a non-faulty array. 3. Both fields are assumed (or made) to be coherent (synchronized in phase). 4. A difference between two fields is formed and is then propagated back to array surface using the angular spectrum method (inverse Fourier propagator). The corresponding result is the surface (aperture) error field. This approach is more precise than the inverse Rayleigh formula used in Ransom and Mittra's paper since the evanescent spectrum may be included into consideration. 5. The error field magnitude peaks at faulty elements (both amplitude and phase excitation fault). 6. The method inherently includes all mutual coupling effects since both the template field and the measured field are full-wave results."
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rodriguez, Herrera Diego. „Antenna characterisation and optimal sampling constraints for breast microwave imaging systems with a novel wave speed propagation algorithm“. IEEE, 2014. http://hdl.handle.net/1993/31907.

Der volle Inhalt der Quelle
Annotation:
Breast microwave imaging (BMI) is a novel modality that complements current breast screening tools. Microwave radar imaging creates a radar cross-section (reflection) map of the breast. The difference in permittivity between healthy and malignant tissue is between 10-50%. This contrast is significantly higher than that obtained with x-rays and supports the use of microwave imaging for breast cancer diagnosis. Prior to widespread clinical use, some areas require further study. Firstly, the performance of three different antennas was carried out, to assess their suitability for a BMI system. Secondly, the sampling constraint of a circular scan geometry was studied and tested using experimental phantoms and these antennas. For accurate breast BMI reconstruction, the transmission speed of the radio waves inside the breast must be determined. The tissue composition of each patient is different, making this task challenging. This work presents an algorithm for wave speed estimation in different mediums.
February 2017
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Vachiramon, Pithawat. „Free-space optical communications with retro-reflecting acquisition and turbulence compensation“. Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:9e19fc21-8767-4d6f-9e75-be4527f5e650.

Der volle Inhalt der Quelle
Annotation:
Free-space optics (FSO), or wireless optical communications, has received extensive research due to its promise of practically limitless bandwidths. However, FSO has challenges yet to be met for a cost effective realisation. This D.Phil thesis explores a solution using a ferro-electric liquid crystal spatial light modulator (FLC SLM) and binary phase holograms to significantly reduce the hardware complexity of an FSO system with auto-alignment and turbulence compensation. The theory of binary phase hologram is presented and extended to obtain a new algorithm that is suitable for a FLC SLM. The algorithm is able to be used in a demonstration system to broadcast data streams to multiple receivers, showing the capability of using FLC SLM to form any beam configuration. An FSO transmitter is then developed that uses retro-reflectors as markers for the receivers. The transmitter combines an imaging system with the FLC SLM as a reconfigurable beam steering system for acquiring the retro-reflector location. The FLC SLM is also used to reduce aberrations in the optics, resulting in a significant increase in the transmitted beam power density. The accuracy of the acquisition is measured to give a small steering error without the use of a closed loop controller. An optical turbulence simulator, using the principals of binary phase hologram, is constructed to simulate optical beam propagation in turbulent conditions. The simulator accurately produces aberrations that have the same statistics with the theoretical prediction. Analysis of the phase distortion due to turbulence is performed and a wavefront sensorless turbulence compensation method based on the FLC SLM gives significant reduction in calculated bit error rates. New scintillation index derivation for multiple optical beams is described and then used to demonstrate further decrease in bit error rates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Microwave holography"

1

P, Anderson A., und University of Sheffield. Department of Electronic and Electrical Engineering., Hrsg. Microwave holographic antenna: Metrology 1969-1985 : an historical compilation chronicling the development of microwave holographic antenna metrology. Sheffield: University of Sheffield Department of Electronic and Electrical Engineering, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nikolova, Natalia K., Reza K. Amineh und Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Incorporated, John, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Nikolova, Natalia K., Reza K. Amineh und Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Incorporated, John, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Nikolova, Natalia K., Reza K. Amineh und Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Incorporated, John, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nikolova, Natalia K., Reza K. Amineh und Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Limited, John, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schnars, Ulf, und Werner Jüptner. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer Berlin / Heidelberg, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Schnars, Ulf, und Werner Jueptner. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schnars, Ulf, und Werner Jüptner. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer London, Limited, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wang, L. Basic Principles and Potential Applications of Holographic Microwave Imaging. ASME Press, 2016. http://dx.doi.org/10.1115/1.860434.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Lulu. Basic Principles and Potential Applications of Holographic Microwave Imaging. American Society of Mechanical Engineers, The, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Microwave holography"

1

Iizuka, Keigo. „Applications of Microwave Holography“. In Engineering Optics, 335–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-69251-7_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Iizuka, Keigo. „Applications of Microwave Holography“. In Springer Series in Optical Sciences, 313–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-540-36808-3_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Iizuka, Keigo. „Applications of Microwave Holography“. In Engineering Optics, 313–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-07032-1_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wang, Jinqing, Lingfeng Yu, Wei Gou, Qinyuan Fan, Rongbin Zhao und Bo Xia. „Microwave Holography Measurement on Seshan 25m Parabolic Antenna and the Assessment of the Accuracy“. In Recent Advances in Computer Science and Information Engineering, 109–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25769-8_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rahmat-Samii, Y. „Antenna Diagnosis by Microwave Holographic Metrology“. In Electromagnetic Modelling and Measurements for Analysis and Synthesis Problems, 17–50. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3232-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jayanthy, Maniam, N. Selvanathan, M. Abu-Bakar, D. Smith, H. M. Elgabroun, P. M. Yeong und S. Senthil Kumar. „Microwave Holographic Imaging Technique for Tumour Detection“. In 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, 275–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68017-8_71.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Anderson, A. P., und M. F. Adams. „Holographic and Tomographic Imaging with Microwaves and Ultrasound“. In Inverse Methods in Electromagnetic Imaging, 1077–105. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5271-3_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Anderson, A. P., und M. F. Adams. „Holographic and Tomographic Imaging with Microwaves and Ultrasound“. In Inverse Methods in Electromagnetic Imaging, 1077–105. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9444-3_62.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wu, Gaoyang, Yuyong Xiong, Zhaoyu Liu, Guang Meng und Zhike Peng. „Full-Field Out-of-Plane Displacement Measurement Using Microwave Holographic Interferometry“. In Proceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023), 175–84. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-49413-0_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Duan, Yuhu. „Microwave Holographic Metrology of the Surface Accuracy of Reflector Antenna—Simulation Method“. In Lecture Notes in Electrical Engineering, 103–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44687-4_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Microwave holography"

1

Kuwahara, Yoshihiko. „Microwave Holography for Breast Imaging“. In 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). IEEE, 2020. http://dx.doi.org/10.1109/rfit49453.2020.9226233.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wilson, Scott A., und Ram M. Narayanan. „Compressive wideband microwave radar holography“. In SPIE Defense + Security, herausgegeben von Kenneth I. Ranney und Armin Doerry. SPIE, 2014. http://dx.doi.org/10.1117/12.2050131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Popov, A., I. Prokopovich und D. Edemskii. „Experimental implementation of microwave subsurface holography“. In 2016 Days on Diffraction (DD). IEEE, 2016. http://dx.doi.org/10.1109/dd.2016.7756870.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ravan, M., Reza K. Amineh und Natalia K. Nikolova. „Microwave holography for near-field imaging“. In 2010 IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting. IEEE, 2010. http://dx.doi.org/10.1109/aps.2010.5561682.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Lulu, Ray Simpkin und A. M. Al-Jumaily. „Holographic Microwave Imaging Array for Early Breast Cancer Detection“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85910.

Der volle Inhalt der Quelle
Annotation:
This paper presents a new Holographic Microwave Imaging Array (HMIA) technique for early breast cancer detection, which is based on microwave holography and aperture synthesis imaging techniques. Using published data for the dielectric properties of normal breast tissues and malignant tumours, a two-dimensional (2D) mathematical model was developed under the MATLAB environment to demonstrate the proposed imaging technique. The computer simulations showed that tumours as small as 2 mm in diameter anywhere within the breast could be successfully detected. The significant imaging improvement was achieved by optimizing antenna array configurations to offer the best possibility of detecting tumours of various size, shape and position.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Babbitt, W. R. „Microwave signal processing with spatial-spectral holography“. In 2005 IEEE LEOS Annual Meeting. IEEE, 2005. http://dx.doi.org/10.1109/leos.2005.1548268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhuravlev, Andrei, Sergey Ivashov, Vladimir Razevig, Igor Vasiliev und Timothy Bechtel. „Shallow depth subsurface imaging with microwave holography“. In SPIE Defense + Security, herausgegeben von Steven S. Bishop und Jason C. Isaacs. SPIE, 2014. http://dx.doi.org/10.1117/12.2051492.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ivashov, Sergey I., Vladimir V. Razevig, Timothy D. Bechtel, Igor A. Vasiliev, Lorenzo Capineri und Andrey V. Zhuravlev. „Microwave holography for NDT of dielectric structures“. In 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS). IEEE, 2015. http://dx.doi.org/10.1109/comcas.2015.7360372.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ahmed, Aijaz, Vineeta Kumari und Gyanendra Sheoran. „Concealed Object Detection using Microwave Transmission Holography“. In 2022 International Conference on Intelligent Technologies (CONIT). IEEE, 2022. http://dx.doi.org/10.1109/conit55038.2022.9847723.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tajik, D., A. D. Pitcher, D. S. Shumakov, N. K. Nikolova und J. W. Bandler. „Enhancing Quantitative Microwave Holography in Tissue Imaging“. In 12th European Conference on Antennas and Propagation (EuCAP 2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.0784.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie