Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microstructures under stress“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microstructures under stress" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Microstructures under stress"
Zheng, Xiaomeng, Yongzhen Zhang und Sanming Du. „Preliminary Research on Response of GCr15 Bearing Steel under Cyclic Compression“. Materials 13, Nr. 16 (05.08.2020): 3443. http://dx.doi.org/10.3390/ma13163443.
Der volle Inhalt der QuelleBarboza, Luis, Enrique López, Hugo Guajardo und Armando Salinas. „Effect of Initial Microstructure on the Temperature Dependence of the Flow Stress and Deformation Microstructure under Uniaxial Compression of Ti-407“. Metals 14, Nr. 5 (26.04.2024): 505. http://dx.doi.org/10.3390/met14050505.
Der volle Inhalt der QuelleXi, Shangbin, und Yu Su. „Phase Field Study of the Microstructural Dynamic Evolution and Mechanical Response of NiTi Shape Memory Alloy under Mechanical Loading“. Materials 14, Nr. 1 (02.01.2021): 183. http://dx.doi.org/10.3390/ma14010183.
Der volle Inhalt der QuelleHanhan, Imad, und Michael D. Sangid. „Design of Low Cost Carbon Fiber Composites via Examining the Micromechanical Stress Distributions in A42 Bean-Shaped versus T650 Circular Fibers“. Journal of Composites Science 5, Nr. 11 (07.11.2021): 294. http://dx.doi.org/10.3390/jcs5110294.
Der volle Inhalt der QuelleChen, Haisheng, Fang Hao, Shixing Huang, Jing Yang, Shaoqiang Li, Kaixuan Wang, Yuxuan Du, Xianghong Liu und Xiaotong Yu. „The Effects of Microstructure on the Dynamic Mechanical Response and Adiabatic Shearing Behaviors of a Near-α Ti-6Al-3Nb-2Zr-1Mo Alloy“. Materials 16, Nr. 4 (07.02.2023): 1406. http://dx.doi.org/10.3390/ma16041406.
Der volle Inhalt der QuelleKim, K., B. Forest und J. Geringer. „Two-dimensional finite element simulation of fracture and fatigue behaviours of alumina microstructures for hip prosthesis“. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 225, Nr. 12 (19.09.2011): 1158–68. http://dx.doi.org/10.1177/0954411911422843.
Der volle Inhalt der QuelleOspina-Correa, Juan D., Daniel A. Olaya-Muñoz, Juan J. Toro-Castrillón, Alejandro Toro, Abelardo Ramírez-Hernández und Juan P. Hernández-Ortíz. „Grain polydispersity and coherent crystal reorientations are features to foster stress hotspots in polycrystalline alloys under load“. Science Advances 7, Nr. 15 (April 2021): eabe3890. http://dx.doi.org/10.1126/sciadv.abe3890.
Der volle Inhalt der QuelleBarua, A., Y. Horie und M. Zhou. „Microstructural level response of HMX–Estane polymer-bonded explosive under effects of transient stress waves“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, Nr. 2147 (15.08.2012): 3725–44. http://dx.doi.org/10.1098/rspa.2012.0279.
Der volle Inhalt der QuelleMiyazawa, Yuto, Fabien Briffod, Takayuki Shiraiwa und Manabu Enoki. „Prediction of Cyclic Stress–Strain Property of Steels by Crystal Plasticity Simulations and Machine Learning“. Materials 12, Nr. 22 (07.11.2019): 3668. http://dx.doi.org/10.3390/ma12223668.
Der volle Inhalt der QuelleKoh, S. U., J. S. Kim, B. Y. Yang und K. Y. Kim. „Effect of Line Pipe Steel Microstructure on Susceptibility to Sulfide Stress Cracking“. Corrosion 60, Nr. 3 (01.03.2004): 244–53. http://dx.doi.org/10.5006/1.3287728.
Der volle Inhalt der QuelleDissertationen zum Thema "Microstructures under stress"
Gonzales, Manny. „The mechanochemistry in heterogeneous reactive powder mixtures under high-strain-rate loading and shock compression“. Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54393.
Der volle Inhalt der QuelleHamma, Juba. „Modélisation par la méthode des champs de phase du maclage mécanique dans des alliages de titane β-métastables“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS381.
Der volle Inhalt der QuelleBeta-metastable titanium alloys exhibit remarkable mechanical properties at room temperature, linked to the microstructure evolution under stress. A specific deformation mode plays an essential role: the {332}<11-3> twinning system. This thesis work thus concerns a modeling, by the phase field method, of {332} twin variants evolution under stress. The first part is devoted to an Allen-Cahn type phase field model with an elasticity taken into account in a geometrically linear formalism. This model is used with an isotropic or anisotropic interface energy in order to study the influence of the latter on the growth of twin variants. The role of an elasticity formulated in finite strain is then discussed and gives rise to the second part of this work. A mechanical equilibrium solver formulated in the geometrically non-linear formalism using a spectral method is then set up and validated. It is then used in the development of an Allen-Cahn type phase field model considering a geometrically non-linear elasticity. We then proceed to a fine comparative study of the microstructures obtained in linear and non-linear geometries. The results show a major difference between the microstructures obtained in the two elastic frameworks, concluding on the need for elasticity in finite strain formalism to reproduce the twin microstructures observed experimentally. Finally, we present a prospective study of a more general phase field formalism than the previous ones, based on a Lagrange reduction method, which would allow to fully take into account the reconstructive character of twinning and the hierarchical nature of the microstructures observed experimentally
Minani, Evariste. „Microstructure, stress and defect evolution under illumination in hydrogenated amorphous silicon (a-Si:H)“. Doctoral thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/6540.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 151-157).
The purpose of this study is firstly to investigate the relation between microstructure, stress and hydrogen distribution in as deposited hydrogenated amorphous silicon (a-Si:H) layers, and secondly the investigation of the influence of illumination on hydrogen evolution and its relationship with the strain in illuminated layers.
Tucker, Matthew Taylor. „Structure-property stress state dependent relationships under varying strain rates“. Diss., Mississippi State : Mississippi State University, 2009. http://library.msstate.edu/etd/show.asp?etd=etd-04022009-091044.
Der volle Inhalt der QuelleMelhorn, Susan Jennifer. „The microstructure of food intake under conditions of high-fat diet, social stress and social subordination“. University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1243018975.
Der volle Inhalt der QuelleMelhorn, Susan J. „The microstructure of food intake under conditions of high-fat diet, social stress and social subordination“. Cincinnati, Ohio : University of Cincinnati, 2009. http://rave.ohiolink.edu/etdc/view.cgi?acc_num=ucin1243018975.
Der volle Inhalt der QuelleAdvisor: Stephen C. Woods. Title from electronic thesis title page (viewed Aug. 12, 2009). Keywords: meal patterns; social stress; social subordination; Neuropeptide Y; body weight; body compostion. Includes abstract. Includes bibliographical references.
Gardiner, Peter Christopher. „Microstructural damage and mechanical properties of a metal matrix composite (Al-particulate SiC) and an intermetallic (titanium aluminide) under various deformation regimes“. Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287656.
Der volle Inhalt der QuelleYang, Dong. „Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24809.
Der volle Inhalt der QuelleCommittee Co-Chair: Preet M. Singh; Committee Co-Chair: Richard W. Neu; Committee Member: Hamid Garmestani; Committee Member: Timothy Patterson; Committee Member: W. Steven Johnson.
„The microstructure of food intake under conditions of high-fat diet, social stress and social subordination“. UNIVERSITY OF CINCINNATI, 2010. http://pqdtopen.proquest.com/#viewpdf?dispub=3371601.
Der volle Inhalt der QuelleArbind, Archana. „Nonlinear Analysis of Conventional and Microstructure Dependent Functionally Graded Beams under Thermo-mechanical Loads“. Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11478.
Der volle Inhalt der QuelleBücher zum Thema "Microstructures under stress"
Kaufman, J. Gilbert, und Elwin L. Rooy. Aluminum Alloy Castings. ASM International, 2004. http://dx.doi.org/10.31399/asm.tb.aacppa.9781627083355.
Der volle Inhalt der QuelleBuchteile zum Thema "Microstructures under stress"
Veyssière, P. „Dislocation Organization Under Stress : Tial“. In Thermodynamics, Microstructures and Plasticity, 497–506. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0219-6_31.
Der volle Inhalt der QuelleOhmura, Takahito. „Nanomechanical Characterization of Metallic Materials“. In The Plaston Concept, 157–95. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7715-1_8.
Der volle Inhalt der QuelleCook, Robert F. „Microstructural Control of Indentation Crack Extension under Externally Applied Stress“. In Fracture Mechanics of Ceramics, 57–67. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/978-0-387-28920-5_5.
Der volle Inhalt der QuelleShibayama, Tamaki, Yutaka Yoshida, Yasuhide Yano und Heishichiro Takahashi. „Microstructure Evolution in Highly Crystalline SiC Fiber Under Applied Stress Environments“. In Ceramic Transactions Series, 301–7. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118406014.ch27.
Der volle Inhalt der QuelleDuh, Jenq-Gong, Kuo-Chuan Liu und Bi-Shiou Chiou. „Microstructural Evaluation of Sn-Pb Solder and Pd-Ag Thick-Film Conductor Metallization Under Thermal Cycling and Aging Conditions“. In Thermal Stress and Strain in Microelectronics Packaging, 532–78. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-7767-2_17.
Der volle Inhalt der QuelleItoh, Yasumi, und Akira Shimamoto. „Effect of Microstructure on Fatigue Crack Growth Resistance of Magnesium Alloy under Biaxial Stress“. In Key Engineering Materials, 1559–64. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-978-4.1559.
Der volle Inhalt der QuellePopov, D., S. Sinogeikin, C. Park, E. Rod, J. Smith, R. Ferry, C. Kenney-Benson, N. Velisavljevic und G. Shen. „New Laue Micro-diffraction Setup for Real-Time In Situ Microstructural Characterization of Materials Under External Stress“. In Advanced Real Time Imaging II, 43–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06143-2_5.
Der volle Inhalt der QuelleLi, D. Y., und L. Q. Chen. „Computer Simulation of Microstructural Evolution Under External Stresses“. In Computer-Aided Design of High-Temperature Materials, 212–28. Oxford University PressNew York, NY, 1999. http://dx.doi.org/10.1093/oso/9780195120509.003.0017.
Der volle Inhalt der QuelleMlikota, M. „On the Critical Resolved Shear Stress and its Importance in the Fatigue Performance of Steels and other Metals with Different Crystallographic Structures“. In Multiscale and Multiphysics Modelling of Materials, 37–65. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901656-3.
Der volle Inhalt der QuelleMlikota, M. „Calculation of the Wöhler (S-N) Curve Using a Two-Scale Model“. In Multiscale and Multiphysics Modelling of Materials, 16–36. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901656-2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Microstructures under stress"
Kang, Young Sup, Ryan D. Evans und Gary L. Doll. „Contact Mechanism of Tribological Coatings With Columnar Microstructure“. In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71119.
Der volle Inhalt der QuelleMueller, Andrew J., und Robert D. White. „Residual Stress Variation in Polysilicon Thin Films“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13764.
Der volle Inhalt der QuelleKermanidis, Alexis T., und Spiros G. Pantelakis. „Fatigue Crack Growth and Remaining Life Assessment of 2024 Aluminum With Variation in Microstructure“. In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-78019.
Der volle Inhalt der QuelleHonma, Yuta, und Kunihiko Hashi. „Effect of Residual Stress on High Temperature Hydrogen Attack for Pressure Vessels“. In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-94058.
Der volle Inhalt der QuelleOlasumboye, Adewale, Gbadebo Owolabi, Olufemi Koya, Horace Whitworth und Nadir Yilmaz. „Comparative Study of the Dynamic Behavior of AA2519 Aluminum Alloy in T6 and T8 Temper Conditions“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10978.
Der volle Inhalt der QuelleZakin, Jacques L., Yunying Qi und Ying Zhang. „Recent Experimental Results on Surfactant Drag Reduction“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45654.
Der volle Inhalt der QuelleWang, Yun-Che, Jun-Liang Chen, Ming-Liang Liao, Chuan Chen, Yan-Chi Chen und Chi-Chuan Hwang. „Stress and Temperature Analysis of the Copper Substrate Indented With Nanotubes and Nanocones“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18379.
Der volle Inhalt der QuelleBahrami, Amir, Anais Bourgeon und Mohamad Cheaitani. „Effects of Strain Rate and Microstructure on Fracture Toughness of Duplex Stainless Steels Under Hydrogen Charging Conditions“. In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49131.
Der volle Inhalt der QuelleOwolabi, Gbadebo, Daniel Odoh, Akindele Odeshi und Horace Whitworth. „Modeling and Simulation of Adiabatic Shear Bands in AISI 4340 Steel Under Impact Loads“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89084.
Der volle Inhalt der QuelleLee, Ki Myung, und Andreas A. Polycarpou. „Micro/Nano Scale Wear Behavior of Pearlitic and Bainitic Rail Steels“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63735.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Microstructures under stress"
Patchett, B. M., und A. C. Bicknell. L51706 Higher-Strength SMAW Filler Metals. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 1993. http://dx.doi.org/10.55274/r0010418.
Der volle Inhalt der Quelle