Auswahl der wissenschaftlichen Literatur zum Thema „Microprinting“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microprinting" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Microprinting"

1

Kowalczyk, Bartlomiej, Mario M. Apodaca, Hideyuki Nakanishi, Stoyan K. Smoukov und Bartosz A. Grzybowski. „Microprinting: Small 17/2009“. Small 5, Nr. 17 (04.09.2009): NA. http://dx.doi.org/10.1002/smll.200990086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zergioti, I., A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki und D. Kafetzopoulos. „Femtosecond laser microprinting of biomaterials“. Applied Physics Letters 86, Nr. 16 (18.04.2005): 163902. http://dx.doi.org/10.1063/1.1906325.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lin, Yen-Po, Yong Zhang und Min-Feng Yu. „Parallel Process 3D Metal Microprinting“. Advanced Materials Technologies 4, Nr. 1 (12.11.2018): 1800393. http://dx.doi.org/10.1002/admt.201800393.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Doherty, Rachel P., Thijs Varkevisser, Margot Teunisse, Jonas Hoecht, Stefania Ketzetzi, Samia Ouhajji und Daniela J. Kraft. „Catalytically propelled 3D printed colloidal microswimmers“. Soft Matter 16, Nr. 46 (2020): 10463–69. http://dx.doi.org/10.1039/d0sm01320j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zijie Lin, 林子杰, 徐剑 Jian Xu und 程亚 Ya Cheng. „Laser assisted 3D metal microprinting (Invited)“. Infrared and Laser Engineering 49, Nr. 12 (2020): 20201079. http://dx.doi.org/10.3788/irla.24_invited-1079new.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zijie Lin, 林子杰, 徐剑 Jian Xu und 程亚 Ya Cheng. „Laser assisted 3D metal microprinting (Invited)“. Infrared and Laser Engineering 49, Nr. 12 (2020): 20201079. http://dx.doi.org/10.3788/irla20201079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mayer, Frederik, Daniel Ryklin, Irene Wacker, Ronald Curticean, Martin Čalkovský, Andreas Niemeyer, Zheqin Dong et al. „3D Two‐Photon Microprinting of Nanoporous Architectures“. Advanced Materials 32, Nr. 32 (30.06.2020): 2002044. http://dx.doi.org/10.1002/adma.202002044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tavana, Hossein, und Shuichi Takayama. „Aqueous biphasic microprinting approach to tissue engineering“. Biomicrofluidics 5, Nr. 1 (März 2011): 013404. http://dx.doi.org/10.1063/1.3516658.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Serra, P., M. Duocastella, J. M. Fernández-Pradas und J. L. Morenza. „Liquids microprinting through laser-induced forward transfer“. Applied Surface Science 255, Nr. 10 (März 2009): 5342–45. http://dx.doi.org/10.1016/j.apsusc.2008.07.200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Verbitsky, Lior, Nir Waiskopf, Shlomo Magdassi und Uri Banin. „A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization“. Nanoscale 11, Nr. 23 (2019): 11209–16. http://dx.doi.org/10.1039/c9nr03086g.

Der volle Inhalt der Quelle
Annotation:
Semiconductor nanocrystals are shown as highly efficient quantum photoinitiators for solvent-and-additive-free polymerization with micromolar loading, surpassing traditional organic initiators. The new quantum photoinitiators demonstrate a two-photon polymerization capacity, allowing multi-functional microprinting.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Microprinting"

1

Scott, Mark Andrew Ph D. Massachusetts Institute of Technology. „Ultra-rapid 2-D and 3-D laser microprinting of proteins“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79248.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D. in Electrical and Medical Engineering)--Harvard-MIT Program in Health Sciences and Technology, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 124-135).
When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3-D printing of full length proteins in collagen, fibrin and gelatin methacrylate scaffolds, as well as printing in agarose and agarose methacrylate scaffolds. We also present a novel method for 3-D printing collagen scaffolds at unprecedented speeds, up to 14 layers per second, generating complex shapes in seconds with sub-micron resolution. Finally, we demonstrate that 3-D printing of scaffold architecture and protein cues inside the scaffold can be combined, for the first time enabling structures with complex sub-micron architectures and chemical cues for directing development. We believe that the ultra-rapid printing technology presented in this thesis will be a key enabler in the development of complex, artificially engineered tissues and organs.
by Mark Andrew Scott.
Ph.D.in Electrical and Medical Engineering
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Liu, Man-Chi S. M. Massachusetts Institute of Technology. „Rapid 3-D laser microprinting of bioscaffolds and patterning of proteins“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92217.

Der volle Inhalt der Quelle
Annotation:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 68-72).
Tissue engineers have been developing biological substitutes to regenerate or replace damaged tissue. Tissues contain both exquisite microarchitectures and chemical cues to support cell migration, proliferation and differentiation. The majority of tissue engineering strategies use porous scaffolds containing chemical cues for culturing cells. However, these methods are unable to truly recapitulate the complexity of the in-vivo environment, limiting the effective regeneration. Several techniques have been developed to create three-dimensional patterns of proteins and 3-D print the architectures of bio-scaffolds for studying and directing cell development. Scott has developed a rapid 3-D laser microprinting system', which is able to simultaneously print the defined architecture of scaffolds and internal patterns of proteins inside scaffolds with high-speed and high-resolution. The object of this thesis is to further develop the technique of rapid 3-D laser microprinting by researching on the biological activity and functions of printed scaffolds and printed proteins. First, we constructed branched collagen microchannels containing microprinted patterns of P-selectin, a protein involved in leukocyte recruitment from blood vessels. We showed that leukocyte rolling occurred on P-selectin patterned collagen channels. Second, we presented a 3-D printed microvasculature by seeding endothelial cells into a printed collagen scaffold with capillary-like microarchitecture. Next, we performed leukocyte rolling assay within the printed microvasculature by printing the patterns of protein cues to activate the endothelium. Last, we created a 3-D microprinted collagen scaffolds for guiding and homing of cells. Cells were guided by printed P-selectin patterns and trapped in specific locations inside collagen scaffolds. All the work demonstrated that printed protein cues retain their biological activity, and the combination of printed scaffolds and patterned protein cues provides potential application for drug screening assays in biomimetic environments and cell delivery for regenerative medicine. We believe that this rapid printing technology will enable highly engineered therapeutic scaffolds for regenerative medicine applications.
by Man-Chi Liu.
S.M.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Petrak, David. „Automated, Spatio-Temporally Controlled Cell Microprinting with Polymeric Aqueous Biphasic Systems“. University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1375364313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mayer, Marc Frederik [Verfasser], und M. [Akademischer Betreuer] Wegener. „On Multi-Material 3D Laser Microprinting / Marc Frederik Mayer ; Betreuer: M. Wegener“. Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1222109476/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mayer, Frederik [Verfasser], und M. [Akademischer Betreuer] Wegener. „On Multi-Material 3D Laser Microprinting / Marc Frederik Mayer ; Betreuer: M. Wegener“. Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1222109476/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Landolt, Kevin M. „Development of test targets for microprinting applications on the Kodak NexPress 2100, the Hewlett Packard Indigo 5000 and the Heidelberg Speedmaster 74 /“. Online version of thesis, 2007. http://hdl.handle.net/1850/4488.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Slavík, Jan. „Zarovnání excitabilních buněk na multielektrodových polích“. Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2021. http://www.nusl.cz/ntk/nusl-442346.

Der volle Inhalt der Quelle
Annotation:
Práce se zabývá zarovnáváním excitabilních buněk na multielektrodových polích. Nejprve bylo analyzováno zarovnávání excitabilních buněk. Byly použity embryonální neurony z hippocampusu potkanů a HL-1 buňky, které jsou odvozeny z AT-1 linie nádorových myších atriálních kardiomyocytů. Zarovnávání bylo testováno na drážkovaných površích a na površích s materiály s různou buněčnou afinitou. Bylo prokázáno, že na drážkových površích se ve směru drážek zarovnávají neurony i HL-1 buňky, ale na površích s různou chemickou affinitou se zarovnávají pouze neurony. Dále byly vyrobeny vlastní multielektrodová pole, na těchto multielektrodových polích byly kultivovány HL-1 buňky a byl změřen a analyzován akčních potenciál HL-1 buněk. Cílem bylo prokázat, že je možné měřit akční potenciál na vyrobených multielektrodových polích. Pro zarovnání buněk na multielektrodovém poli bylo vyrobeno speciální multieletrodové pole s uniformním povrchem. Toto multielektrodové pole je nazýváno planární multielektrodové pole. Planární multielektrodové pole bylo vyrobeno speciálním vyrobním procesem. Vrstvy planárního multielektrodového pole byly deponovány na pomocný substrát v opačném pořadí. Pomocný substrátem pro depozici byla křemíková deska, na který byla nadeponována další pomocná vrstva zlata. Horní izolační vrstva planárního multielektrodové pole byla deponována jako první a nejspodnější vrstva substrátu byla nadeponována jako poslední. Planární multielektrodové pole i s pomocnou zlatou vrstvou bylo strhnuto s křemíku díky nízké adhezi zlata ke křemíku a planární multielektrodové pole se otočilo vzhůru nohama. Pomocná zlatá vrstva byla odstraněna mokrým leptadlem a tím bylo planární multielektrodové pole dokončeno. Na planárním multielektrodovém poli byly zarovnány HL-1 buňky do pruhů chemickou metodou pomocí kombinace otisku adhezní látky a následným potažení neotisklých ploch anti-adhezní látkou. Elektrofyziologické vlastnosti zarovnaných HL-1 buněk byly změřeny pomocí planárního multielektrodového pole. Tímto experimentem byla představena výrobní technologie pro výrobu planárních multielektrodových polí a toto planární multielektrodové pole bylo úspěšně testováno pro zarovnání HL-1 buněk na jeho povrchu kombinací otisku adhezní látky a potahování antiadhezivním činidlem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ho, Yi-Cheng, und 何顗琤. „Building Neuronal Cell Arrays Using Microprinting and Microstencil Technology“. Thesis, 2006. http://ndltd.ncl.edu.tw/handle/09954233742396443993.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Microprinting"

1

Hu, Anming, Hrsg. Laser Micro-Nano-Manufacturing and 3D Microprinting. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Microprinting"

1

Chang, Robert C., Kamal Emami, Antony Jeevarajan, Honglu Wu und Wei Sun. „Microprinting of Liver Micro-organ for Drug Metabolism Study“. In Methods in Molecular Biology, 219–38. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-59745-551-0_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hu, Anming, Ruozhou Li, Shi Bai, Yongchao Yu, Weiping Zhou, Denzel Bridges, Yangbao Deng und Lingyue Zhang. „Introduction to Laser Micro-to-Nano Manufacturing“. In Laser Micro-Nano-Manufacturing and 3D Microprinting, 1–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kirihara, Soshu. „Laser Scanning Stereolithography“. In Laser Micro-Nano-Manufacturing and 3D Microprinting, 305–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pfleging, Wilhelm, Petronela Gotcu, Peter Smyrek, Yijing Zheng, Joong Kee Lee und Hans Jürgen Seifert. „Lithium-Ion Battery—3D Micro-/Nano-Structuring, Modification and Characterization“. In Laser Micro-Nano-Manufacturing and 3D Microprinting, 313–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhong, Minlin, und Peixun Fan. „Ultrafast Laser Enabling Versatile Fabrication of Surface Micro-nano Structures“. In Laser Micro-Nano-Manufacturing and 3D Microprinting, 75–112. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Falcón Casas, Ignacio, und Wolfgang Kautek. „Apertureless Scanning Near-Field Optical Lithography“. In Laser Micro-Nano-Manufacturing and 3D Microprinting, 113–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Compagnini, Giuseppe, Marcello Condorelli, Carmelo La Rosa, Luisa D’Urso, Salvatore Scirè, Roberto Fiorenza, Simona Filice und Silvia Scalese. „Laser-Induced Synthesis and Processing of Nanoparticles in the Liquid Phase for Biosensing and Catalysis“. In Laser Micro-Nano-Manufacturing and 3D Microprinting, 133–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sano, Tomokazu. „Dry Laser Peening: Ultrashort Pulsed Laser Peening Without Sacrificial Overlay Under Atmospheric Conditions“. In Laser Micro-Nano-Manufacturing and 3D Microprinting, 163–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chen, Feng, und Javier R. Vázquez de Aldana. „Direct Femtosecond Laser Writing of Optical Waveguides in Dielectrics“. In Laser Micro-Nano-Manufacturing and 3D Microprinting, 185–210. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Feng, Guoying, Guang Li, Zhuping Wang und Yao Xiao. „Micro-hole Arrays and Net-like Structure Fabrication via Femtosecond Laser Pulses“. In Laser Micro-Nano-Manufacturing and 3D Microprinting, 211–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Microprinting"

1

Kandyla, M., C. Pandis, G. Tsekenis, P. Dimitrakis, S. Chatzandroulis und I. Zergioti. „Biosensor Fabrication by Direct Laser Microprinting“. In Frontiers in Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/fio.2010.fwf4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Strale, Pierre-Olivier, Ammar Azioune, Ghislain Bugnicourt, Yohan Lecomte, Makhlad Chahid und Vincent Studer. „Light-induced quantitative microprinting of biomolecules“. In SPIE OPTO, herausgegeben von Michael R. Douglass und Benjamin L. Lee. SPIE, 2017. http://dx.doi.org/10.1117/12.2253831.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Patrascioiu, A., J. M. Fernandez-Pradas, J. L. Morenza und P. Serra. „Film-free laser microprinting of complex materials“. In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801536.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Serra, P., A. Patrascioiu, J. M. Fernández-Pradas und J. L. Morenza. „Film-free laser microprinting of transparent solutions“. In SPIE LASE, herausgegeben von Xianfan Xu, Guido Hennig, Yoshiki Nakata und Stephan W. Roth. SPIE, 2013. http://dx.doi.org/10.1117/12.2005881.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hayes, Donald J., und Ting Chen. „Next-generation optoelectronic components enabled by direct-write microprinting technology“. In Defense and Security, herausgegeben von Andrew R. Pirich, Michael J. Hayduk und Eric Donkor. SPIE, 2004. http://dx.doi.org/10.1117/12.541071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Fung, Tracy H., Gregory I. Ball, Sarah C. McQuaide, Shih-Hui Chao, Alejandro Coleman-Lerner, Mark R. Holl und Deirdre R. Meldrum. „Microprinting of On-Chip Cultures: Patterning of Yeast Cell Microarrays Using Concanavalin-A Adhesion“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60866.

Der volle Inhalt der Quelle
Annotation:
Microprinting has been demonstrated effective in the patterning of surface regions for trapping cells used within microfluidic devices. In this study a polydimethylsiloxane (PDMS) silicone elastomer stamp was microfabricated and used to microstamp concanavalin-A (con-A; protein that binds to yeast) on a glass surface. Yeast cells, Saccharomyces cerevisiae, were brought into contact with patterned con-A producing an array of yeast microscale culture in an ordered array identical to the printed pattern.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lu, Lin, David Wootton, Peter I. Lelkes und Jack Zhou. „Bone Scaffold Fabrication System Study“. In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31219.

Der volle Inhalt der Quelle
Annotation:
Musculoskeletal conditions are a major health concern in United States because of a large aging population and increased occurrence of sport-related injuries. The need for bone substitutes is especially important. Traditional treatments of bone-defect have many limitations. Bone tissue engineering may offer a less painful alternative to traditional bone grafts with lower risk of infection. This research integrates biomimetic modeling, solid freedom fabrication (SFF), systems and control, and tissue engineering in one intelligent system for structured, highly porous biomaterials, which will be applied to bone scaffolds. Recently a new SFF-based fabrication system has been developed, which uses a pressurized extrusion to print highly biocompatible and water soluble sucrose bone scaffold porogens. The fabrication process for PCL scaffold implemented and tested using the newly developed porogen system. The resultant scaffold demonstrates the defined porous structure designed into the sucrose porogens. The viscosity of sucrose mixture has been tested and analyzed. The flow rate measurements of sucrose machine have been carried out. The input factor, which induced uncertainty in the flow rate of the microprinting system has been analyzed. The result showed that the reservoir pressure was dominant to determine the flow rate. This is very important for improving the quality control of our fabrication system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie