Zeitschriftenartikel zum Thema „Micropolar fluids equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Micropolar fluids equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Stamenkovic, Zivojin, Milos Kocic, Jasmina Bogdanovic-Jovanovic und Jelena Petrovic. „Nano and micropolar MHD fluid flow and heat transfer in inclined channel“. Thermal Science, Nr. 00 (2023): 170. http://dx.doi.org/10.2298/tsci230515170k.
Der volle Inhalt der QuelleKocić, Miloš, Živojin Stamenković, Jelena Petrović und Jasmina Bogdanović-Jovanović. „Control of MHD Flow and Heat Transfer of a Micropolar Fluid through Porous Media in a Horizontal Channel“. Fluids 8, Nr. 3 (08.03.2023): 93. http://dx.doi.org/10.3390/fluids8030093.
Der volle Inhalt der QuelleYang, Hujun, Xiaoling Han und Caidi Zhao. „Homogenization of Trajectory Statistical Solutions for the 3D Incompressible Micropolar Fluids with Rapidly Oscillating Terms“. Mathematics 10, Nr. 14 (15.07.2022): 2469. http://dx.doi.org/10.3390/math10142469.
Der volle Inhalt der QuelleRahman, M. M., und T. Sultana. „Radiative Heat Transfer Flow of Micropolar Fluid with Variable Heat Flux in a Porous Medium“. Nonlinear Analysis: Modelling and Control 13, Nr. 1 (25.01.2008): 71–87. http://dx.doi.org/10.15388/na.2008.13.1.14590.
Der volle Inhalt der QuelleChen, James, James D. Lee und Chunlei Liang. „Constitutive equations of Micropolar electromagnetic fluids“. Journal of Non-Newtonian Fluid Mechanics 166, Nr. 14-15 (August 2011): 867–74. http://dx.doi.org/10.1016/j.jnnfm.2011.05.004.
Der volle Inhalt der QuelleIDO, Yasushi. „Basic Equations of Micropolar Magnetic Fluids“. Transactions of the Japan Society of Mechanical Engineers Series B 70, Nr. 696 (2004): 2065–70. http://dx.doi.org/10.1299/kikaib.70.2065.
Der volle Inhalt der QuelleDuarte-Leiva, Cristian, Sebastián Lorca und Exequiel Mallea-Zepeda. „A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions“. Symmetry 13, Nr. 8 (26.07.2021): 1348. http://dx.doi.org/10.3390/sym13081348.
Der volle Inhalt der QuelleKocić, Miloš, Živojin Stamenković, Jelena Petrović und Jasmina Bogdanović-Jovanović. „MHD micropolar fluid flow in porous media“. Advances in Mechanical Engineering 15, Nr. 6 (Juni 2023): 168781322311784. http://dx.doi.org/10.1177/16878132231178436.
Der volle Inhalt der QuelleHassanien, I. A. „Mixed Convection in Micropolar Boundary-Layer Flow Over a Horizontal Semi-Infinite Plate“. Journal of Fluids Engineering 118, Nr. 4 (01.12.1996): 833–38. http://dx.doi.org/10.1115/1.2835517.
Der volle Inhalt der QuelleSrinivas, J., J. V. Ramana Murthy und Ali J. Chamkha. „Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM“. International Journal of Numerical Methods for Heat & Fluid Flow 26, Nr. 3/4 (03.05.2016): 1027–49. http://dx.doi.org/10.1108/hff-09-2015-0354.
Der volle Inhalt der QuelleChandrawat, Rajesh Kumar, Varun Joshi und O. Anwar Bég. „Ion Slip and Hall Effects on Generalized Time-Dependent Hydromagnetic Couette Flow of Immiscible Micropolar and Dusty Micropolar Fluids with Heat Transfer and Dissipation: A Numerical Study“. Journal of Nanofluids 10, Nr. 3 (01.09.2021): 431–46. http://dx.doi.org/10.1166/jon.2021.1792.
Der volle Inhalt der QuelleUddin, Ziya, Manoj Kumar und Souad Harmand. „Influence of thermal radiation and heat generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge considering hall and ion slip currents“. Thermal Science 18, suppl.2 (2014): 489–502. http://dx.doi.org/10.2298/tsci110712085u.
Der volle Inhalt der QuelleAhmad, Farooq, A. Othman Almatroud, Sajjad Hussain, Shan E. Farooq und Roman Ullah. „Numerical Solution of Nonlinear Diff. Equations for Heat Transfer in Micropolar Fluids over a Stretching Domain“. Mathematics 8, Nr. 5 (25.05.2020): 854. http://dx.doi.org/10.3390/math8050854.
Der volle Inhalt der QuelleChandrawat, Rajesh Kumar, Varun Joshi und O. Anwar Bég. „Numerical Study of Interface Tracking for the Unsteady Flow of Two Immiscible Micropolar and Newtonian Fluids Through a Horizontal Channel with an Unstable Interface“. Journal of Nanofluids 10, Nr. 4 (01.12.2021): 552–63. http://dx.doi.org/10.1166/jon.2021.1805.
Der volle Inhalt der QuelleRafique, Anwar, Misiran, Khan, Baleanu, Nisar, Sherif und Seikh. „Hydromagnetic Flow of Micropolar Nanofluid“. Symmetry 12, Nr. 2 (06.02.2020): 251. http://dx.doi.org/10.3390/sym12020251.
Der volle Inhalt der QuelleEringen, A. C. „A mixture theory for geophysical fluids“. Nonlinear Processes in Geophysics 11, Nr. 1 (25.02.2004): 75–82. http://dx.doi.org/10.5194/npg-11-75-2004.
Der volle Inhalt der QuelleHasnain, Jafar, und Zaheer Abbas. „Entropy generation analysis on two-phase micropolar nanofluids flow in an inclined channel with convective heat transfer“. Thermal Science 23, Nr. 3 Part B (2019): 1765–77. http://dx.doi.org/10.2298/tsci170715221h.
Der volle Inhalt der QuelleKhalid, Asma, Ilyas Khan und Sharidan Shafie. „Free convection flow of micropolar fluids over an oscillating vertical plate“. Malaysian Journal of Fundamental and Applied Sciences 13, Nr. 4 (26.12.2017): 654–58. http://dx.doi.org/10.11113/mjfas.v13n4.738.
Der volle Inhalt der QuelleK.C., Durga Jang, und Dipendra Regmi. „Global regularity criteria for the 2D Magneto-micropolar Equations with Partial Dissipation“. Nepali Mathematical Sciences Report 40, Nr. 1-2 (31.12.2023): 55–70. http://dx.doi.org/10.3126/nmsr.v40i1-2.61498.
Der volle Inhalt der QuelleTangsali, Param R., Nagaraj N. Katagi, Ashwini Bhat und Manjunath Shettar. „Analysis of Magnetohydrodynamic Free Convection in Micropolar Fluids over a Permeable Shrinking Sheet with Slip Boundary Conditions“. Symmetry 16, Nr. 4 (29.03.2024): 400. http://dx.doi.org/10.3390/sym16040400.
Der volle Inhalt der QuelleNabwey, Hossam A., Ahmed M. Rashad und Waqar A. Khan. „Slip Microrotation Flow of Silver-Sodium Alginate Nanofluid via Mixed Convection in a Porous Medium“. Mathematics 9, Nr. 24 (14.12.2021): 3232. http://dx.doi.org/10.3390/math9243232.
Der volle Inhalt der QuelleCruz, Felipe W. „Global strong solutions for the incompressible micropolar fluids equations“. Archiv der Mathematik 113, Nr. 2 (06.04.2019): 201–12. http://dx.doi.org/10.1007/s00013-019-01319-4.
Der volle Inhalt der QuelleNazeer, Mubbashar, N. Ali und T. Javed. „Effects of moving wall on the flow of micropolar fluid inside a right angle triangular cavity“. International Journal of Numerical Methods for Heat & Fluid Flow 28, Nr. 10 (01.10.2018): 2404–22. http://dx.doi.org/10.1108/hff-10-2017-0424.
Der volle Inhalt der QuelleIDO, Yasushi, und Takahiko TANAHASHI. „Fundamental equations for magnetic fluids by micropolar theory. 2nd report: Constitutive equations.“ Transactions of the Japan Society of Mechanical Engineers Series B 56, Nr. 525 (1990): 1392–99. http://dx.doi.org/10.1299/kikaib.56.1392.
Der volle Inhalt der QuelleCheruku, Vasavi, und B. Ravindra Reddy. „Numerical Study in Effect of Thermal Slip on Two Fluid Flow in a Vertical Channel“. Transactions on Energy Systems and Engineering Applications 4, Nr. 2 (17.07.2023): 1–18. http://dx.doi.org/10.32397/tesea.vol4.n2.517.
Der volle Inhalt der QuelleBenariba, Aboubakeur, Ahmed Bouzidane und Marc Thomas. „Analytical analysis of a rigid rotor mounted on three hydrostatic pads lubricated with micropolar fluids“. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233, Nr. 6 (23.10.2018): 859–69. http://dx.doi.org/10.1177/1350650118806374.
Der volle Inhalt der QuelleChu, Li Ming, Jaw-Ren Lin, Yuh-Ping Chang und Chung-Chun Wu. „Elastohydrodynamic lubrication of circular contacts at pure squeeze motion with micropolar lubricants“. Industrial Lubrication and Tribology 68, Nr. 6 (12.09.2016): 640–46. http://dx.doi.org/10.1108/ilt-10-2015-0139.
Der volle Inhalt der QuelleLin, Hongxia, Sen Liu, Heng Zhang und Qing Sun. „Stability for a system of the 2D incompressible magneto-micropolar fluid equations with partial mixed dissipation“. Nonlinearity 37, Nr. 5 (18.03.2024): 055001. http://dx.doi.org/10.1088/1361-6544/ad3098.
Der volle Inhalt der QuelleChandrawat, Rajesh Kumar, und Varun Joshi. „Numerical Solution of the Time-Depending Flow of Immiscible Fluids with Fuzzy Boundary Conditions“. International Journal of Mathematical, Engineering and Management Sciences 6, Nr. 5 (01.10.2021): 1315–30. http://dx.doi.org/10.33889/ijmems.2021.6.5.079.
Der volle Inhalt der QuelleSava, Valeriu Al. „A spatial decay estimate of the flow equations of micropolar fluids“. International Journal of Engineering Science 24, Nr. 3 (Januar 1986): 449–52. http://dx.doi.org/10.1016/0020-7225(86)90099-6.
Der volle Inhalt der QuelleSil, Sayantan. „Flow of MHD micropolar fluid through porous medium: a hodograhic approach for exact solution“. Annals of Mathematics and Computer Science 22 (28.03.2024): 128–48. http://dx.doi.org/10.56947/amcs.v22.287.
Der volle Inhalt der QuelleKumar, Sanjay, Asif Ali Shaikh, Hazoor Bux Lanjwani und Sayed Feroz Shah. „MHD flow and heat transfer of micropolar nanofluid on a linearly stretching/shrinking porous surface“. VFAST Transactions on Mathematics 11, Nr. 1 (09.05.2023): 141–54. http://dx.doi.org/10.21015/vtm.v11i1.1456.
Der volle Inhalt der QuelleSengupta, Sanjib, und Reshmi Deb. „Gravitation modulation impact on MHD free convection flow of micropolar fluid“. Journal of Naval Architecture and Marine Engineering 17, Nr. 2 (30.12.2020): 199–218. http://dx.doi.org/10.3329/jname.v17i2.41742.
Der volle Inhalt der QuelleKamran, Muhammad, Benchawan Wiwatanapataphee und Kuppalapalle Vajravelu. „Hall current, Newtonian heating and second-order slip effects on convective magneto-micropolar fluid flow over a sheet“. International Journal of Modern Physics C 29, Nr. 09 (September 2018): 1850090. http://dx.doi.org/10.1142/s0129183118500900.
Der volle Inhalt der QuelleMuthtamilselvan, M., K. Periyadurai und Deog Hee Doh. „Effect of mutually orthogonal heated plates on buoyancy convection flow of micropolar fluid in a cavity“. International Journal of Numerical Methods for Heat & Fluid Flow 28, Nr. 9 (03.09.2018): 2231–51. http://dx.doi.org/10.1108/hff-03-2018-0118.
Der volle Inhalt der QuelleIDO, Yasushi, und Takahiko TANAHASHI. „Fundamental equations for magnetic fluids by micropolar theory. 1st report: Strain tensors and balance equations.“ Transactions of the Japan Society of Mechanical Engineers Series B 56, Nr. 525 (1990): 1385–91. http://dx.doi.org/10.1299/kikaib.56.1385.
Der volle Inhalt der QuelleSwalmeh, Mohammed, Hamzeh Alkasasbeh, Abid Hussanan und Mustafa Mamat. „Influence of micro-rotation and micro-inertia on nanofluid flow over a heated horizontal circular cylinder with free convection“. Theoretical and Applied Mechanics 46, Nr. 2 (2019): 125–45. http://dx.doi.org/10.2298/tam181120008s.
Der volle Inhalt der QuelleNaduvinamani, N. B., und G. B. Marali. „Dynamic Reynolds equation for micropolar fluids and the analysis of plane inclined slider bearings with squeezing effect“. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 221, Nr. 7 (01.07.2007): 823–29. http://dx.doi.org/10.1243/13506501jet286.
Der volle Inhalt der QuelleKhan, Waqar A., A. M. Rashad, S. M. M. EL-Kabeir und A. M. A. EL-Hakiem. „Framing the MHD Micropolar-Nanofluid Flow in Natural Convection Heat Transfer over a Radiative Truncated Cone“. Processes 8, Nr. 4 (25.03.2020): 379. http://dx.doi.org/10.3390/pr8040379.
Der volle Inhalt der QuelleWENG, HUEI CHU, CHA'O-KUANG CHEN und MIN-HSING CHANG. „Stability of micropolar fluid flow between concentric rotating cylinders“. Journal of Fluid Mechanics 631 (17.07.2009): 343–62. http://dx.doi.org/10.1017/s0022112009007150.
Der volle Inhalt der QuelleSheremet, Mikhail, Teodor Grosan und Ioan Pop. „Natural convection in a triangular cavity filled with a micropolar fluid“. International Journal of Numerical Methods for Heat & Fluid Flow 27, Nr. 2 (06.02.2017): 504–15. http://dx.doi.org/10.1108/hff-02-2016-0061.
Der volle Inhalt der QuelleNadeem, S., M. Y. Malik und Nadeem Abbas. „Heat transfer of three-dimensional micropolar fluid on a Riga plate“. Canadian Journal of Physics 98, Nr. 1 (Januar 2020): 32–38. http://dx.doi.org/10.1139/cjp-2018-0973.
Der volle Inhalt der QuelleAjala, Olusegun Adebayo, Peter Adegbite, Adebowale Martins Obalalu, Amir Abbas, Abel O. Owolabi und Olusegun Babatunde Ojewola. „Bio-Convective Flow of Micropolar Nanofluids over an Inclined Permeable Stretching Surface with Radiative Activation Energy“. Journal of Biomimetics, Biomaterials and Biomedical Engineering 65 (23.07.2024): 1–13. http://dx.doi.org/10.4028/p-c79r3y.
Der volle Inhalt der QuelleAdeniyan, Adetunji, Gbeminiyi M. Sobamowo und Samsondeen O. Kehinde. „Impacts of Slips on Peristaltic flow and Heat transfer of micropolar fluids in an asymmetric channel“. International Journal of Mathematical Analysis and Optimization: Theory and Applications 7, Nr. 2 (März 2022): 107–29. http://dx.doi.org/10.52968/28308561.
Der volle Inhalt der QuelleVafeas, Panayiotis, Polycarpos K. Papadopoulos und Pavlos M. Hatzikonstantinou. „On the Perturbation of the Three-Dimensional Stokes Flow of Micropolar Fluids by a Constant Uniform Magnetic Field in a Circular Cylinder“. Mathematical Problems in Engineering 2011 (2011): 1–41. http://dx.doi.org/10.1155/2011/659691.
Der volle Inhalt der QuelleMoosaie, Amin, und Gholamali Atefi. „Cosserat Modeling of Turbulent Plane-Couette and Pressure-Driven Channel Flows“. Journal of Fluids Engineering 129, Nr. 6 (26.01.2007): 806–10. http://dx.doi.org/10.1115/1.2734251.
Der volle Inhalt der QuelleAbdal, Sohaib, Bagh Ali, Saba Younas, Liaqat Ali und Amna Mariam. „Thermo-Diffusion and Multislip Effects on MHD Mixed Convection Unsteady Flow of Micropolar Nanofluid over a Shrinking/Stretching Sheet with Radiation in the Presence of Heat Source“. Symmetry 12, Nr. 1 (26.12.2019): 49. http://dx.doi.org/10.3390/sym12010049.
Der volle Inhalt der QuelleRafique, Khuram, Muhammad Imran Anwar, Masnita Misiran, Ilyas Khan, Asiful H. Seikh, El-Sayed M. Sherif und Kottakkaran Sooppy Nisar. „Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface“. Processes 7, Nr. 12 (04.12.2019): 926. http://dx.doi.org/10.3390/pr7120926.
Der volle Inhalt der QuelleChen, Mingtao, Bin Huang und Jianwen Zhang. „Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum“. Nonlinear Analysis: Theory, Methods & Applications 79 (März 2013): 1–11. http://dx.doi.org/10.1016/j.na.2012.10.013.
Der volle Inhalt der QuelleYADAV, PRAMOD KUMAR, Ankit Kumar und A. N. FILIPPOV. „ANALYSIS OF ENTROPY PRODUCTION OF IMMISCIBLE MICROPOLAR AND NEWTONIAN FLUIDS FLOW THROUGH A CHANNEL: EFFECT OF THERMAL RADIATION AND MAGNETIC FIELD“. Коллоидный журнал 85, Nr. 1 (01.01.2023): 101–21. http://dx.doi.org/10.31857/s0023291222700033.
Der volle Inhalt der Quelle