Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Micropolar fluids equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Micropolar fluids equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Micropolar fluids equations"
Stamenkovic, Zivojin, Milos Kocic, Jasmina Bogdanovic-Jovanovic und Jelena Petrovic. „Nano and micropolar MHD fluid flow and heat transfer in inclined channel“. Thermal Science, Nr. 00 (2023): 170. http://dx.doi.org/10.2298/tsci230515170k.
Der volle Inhalt der QuelleKocić, Miloš, Živojin Stamenković, Jelena Petrović und Jasmina Bogdanović-Jovanović. „Control of MHD Flow and Heat Transfer of a Micropolar Fluid through Porous Media in a Horizontal Channel“. Fluids 8, Nr. 3 (08.03.2023): 93. http://dx.doi.org/10.3390/fluids8030093.
Der volle Inhalt der QuelleYang, Hujun, Xiaoling Han und Caidi Zhao. „Homogenization of Trajectory Statistical Solutions for the 3D Incompressible Micropolar Fluids with Rapidly Oscillating Terms“. Mathematics 10, Nr. 14 (15.07.2022): 2469. http://dx.doi.org/10.3390/math10142469.
Der volle Inhalt der QuelleRahman, M. M., und T. Sultana. „Radiative Heat Transfer Flow of Micropolar Fluid with Variable Heat Flux in a Porous Medium“. Nonlinear Analysis: Modelling and Control 13, Nr. 1 (25.01.2008): 71–87. http://dx.doi.org/10.15388/na.2008.13.1.14590.
Der volle Inhalt der QuelleChen, James, James D. Lee und Chunlei Liang. „Constitutive equations of Micropolar electromagnetic fluids“. Journal of Non-Newtonian Fluid Mechanics 166, Nr. 14-15 (August 2011): 867–74. http://dx.doi.org/10.1016/j.jnnfm.2011.05.004.
Der volle Inhalt der QuelleIDO, Yasushi. „Basic Equations of Micropolar Magnetic Fluids“. Transactions of the Japan Society of Mechanical Engineers Series B 70, Nr. 696 (2004): 2065–70. http://dx.doi.org/10.1299/kikaib.70.2065.
Der volle Inhalt der QuelleDuarte-Leiva, Cristian, Sebastián Lorca und Exequiel Mallea-Zepeda. „A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions“. Symmetry 13, Nr. 8 (26.07.2021): 1348. http://dx.doi.org/10.3390/sym13081348.
Der volle Inhalt der QuelleKocić, Miloš, Živojin Stamenković, Jelena Petrović und Jasmina Bogdanović-Jovanović. „MHD micropolar fluid flow in porous media“. Advances in Mechanical Engineering 15, Nr. 6 (Juni 2023): 168781322311784. http://dx.doi.org/10.1177/16878132231178436.
Der volle Inhalt der QuelleHassanien, I. A. „Mixed Convection in Micropolar Boundary-Layer Flow Over a Horizontal Semi-Infinite Plate“. Journal of Fluids Engineering 118, Nr. 4 (01.12.1996): 833–38. http://dx.doi.org/10.1115/1.2835517.
Der volle Inhalt der QuelleSrinivas, J., J. V. Ramana Murthy und Ali J. Chamkha. „Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM“. International Journal of Numerical Methods for Heat & Fluid Flow 26, Nr. 3/4 (03.05.2016): 1027–49. http://dx.doi.org/10.1108/hff-09-2015-0354.
Der volle Inhalt der QuelleDissertationen zum Thema "Micropolar fluids equations"
Gumgum, Sevin. „The Dual Reciprocity Boundary Element Method Solution Of Fluid Flow Problems“. Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611605/index.pdf.
Der volle Inhalt der QuelleLlerena, Montenegro Henry David. „Sur l'interdépendance des variables dans l'étude de quelques équations de la mécanique des fluides“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM048.
Der volle Inhalt der QuelleThis thesis is devoted to the study of the relationship between the variables in the micropolar fluids equations. This system, which is based on the Navier-Stokes equations, consists in a coupling of two variables: the velocity field vec{u} and the microrotation field vec{w}. Our aim is to provide a better understanding of how information about one variable influences the behavior of the other. To this end, we have divided this thesis into four chapters, where we will study the local regularity properties of Leray-type weak solutions, and later we will focus on the regularity and uniqueness of weak solutions for the stationary case. The first chapter presents a brief physical derivation of the micropolar equations followed by the construction of the Leray-type weak solutions. In Chapter 2, we begin by proving a gain of integrability for both variables vec{u} and vec{w} whenever the velocity belongs to certain Morrey spaces. This result highlights an effect of domination by the velocity. We then show that this effect can also be observed within the framework of the Caffarelli-Kohn-Nirenberg theory, i.e., under an additional smallness hypothesis only on the gradient of the velocity, we can demonstrate that the solution becomes Hölder continuous. For this, we introduce the notion of a partial suitable solution, which is fundamental in this work and represents one of the main novelties. In the last section of this chapter, we derive similar results in the context of the Serrin criterion. In Chapter 3, we focus on the behavior of the L^3-norm of the velocity vec{u} near possible points where regularity may get lost. More precisely, we establish a blow-up criterion for the L^3 norm of the velocity and we improve this result by presenting a concentration phenomenon. We also verify that the limit point L^infty_t L^3_x of the Serrin criterion remains valid for the micropolar fluids equations. Finally, the problem of existence and uniqueness for the stationary micropolar fluids equations is addressed in Chapter 4. Indeed, we prove the existence of weak solutions (vec{u}, vec{w}) in the natural energy space dot{H}^1(mathbb{R}^3) imes H^1(mathbb{R}^3). Moreover, by using the relationship between the variables, we deduce that these solutions are regular. It is worth noting that the trivial solution may not be unique, and to overcome this difficulty, we develop a Liouville-type theorem. Hence, we demonstrate that by imposing stronger decay at infinity only on vec{u}, we can infer the uniqueness of the trivial solution (vec{u},vec{w})=(0,0)
Mostefai, Mohamed Sadek. „Déduction rigoureuse de l'équation de Reynolds à partir d'un système modélisant l'écoulement à faible épaisseur d'un fluide micropolaire, et étude de deux problèmes à frontière libre : Hele-Shaw généralisé et Stephan à deux phases pour un fluide non newtonien“. Saint-Etienne, 1997. http://www.theses.fr/1997STET4019.
Der volle Inhalt der QuelleBENHABOUCHA, Nadia. „Quelques problèmes mathématiques relatifs à la modélisation des conditions aux limites fluide-solide pour des écoulements de faible épaisseur“. Phd thesis, Université Claude Bernard - Lyon I, 2003. http://tel.archives-ouvertes.fr/tel-00005482.
Der volle Inhalt der QuelleBuchteile zum Thema "Micropolar fluids equations"
Simčić, Loredana, und Ivan Dražić. „Some Properties of a Generalized Solution for Shear Flow of a Compressible Viscous Micropolar Fluid Model“. In Differential and Difference Equations with Applications, 455–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56323-3_35.
Der volle Inhalt der QuelleDražić, Ivan. „Homogeneous Boundary Problem for the Compressible Viscous and Heat-Conducting Micropolar Fluid Model with Cylindrical Symmetry“. In Differential and Difference Equations with Applications, 79–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75647-9_7.
Der volle Inhalt der QuelleDražić, Ivan. „Non-homogeneous Boundary Problems for One-Dimensional Flow of the Compressible Viscous and Heat-Conducting Micropolar Fluid“. In Differential and Difference Equations with Applications, 389–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56323-3_30.
Der volle Inhalt der QuelleMujaković, N., und N. Črnjarić–Žic. „Finite Difference Formulation for the Model of a Compressible Viscous and Heat-Conducting Micropolar Fluid with Spherical Symmetry“. In Differential and Difference Equations with Applications, 293–301. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32857-7_27.
Der volle Inhalt der QuelleDražić, Ivan, und Nermina Mujaković. „Some Properties of a Generalized Solution for 3-D Flow of a Compressible Viscous Micropolar Fluid Model with Spherical Symmetry“. In Differential and Difference Equations with Applications, 205–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32857-7_19.
Der volle Inhalt der QuelleMerkin, John H., Ioan Pop, Yian Yian Lok und Teodor Grosan. „Basic equations and mathematical methods“. In Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids, 1–21. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-821188-5.00002-3.
Der volle Inhalt der QuelleConca, C., R. Gormaz, E. Ortega und M. Rojas. „Existence and uniqueness of a strong solution for nonhomogeneous micropolar fluids“. In Nonlinear Partial Differential Equations and their Applications - Collège de France Seminar Volume XIV, 213–41. Elsevier, 2002. http://dx.doi.org/10.1016/s0168-2024(02)80012-1.
Der volle Inhalt der QuelleSava, V. Al. „An initial boundary value problem for the equations of plane flow of a micropolar fluid in a time-dependent domain“. In Integral methods in science and engineering, 160–64. Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780367812027-32.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Micropolar fluids equations"
Najafi, A., F. Daneshmand und S. R. Mohebpour. „Analysis of Vibrating Micropolar Plate in Contact With a Fluid“. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31036.
Der volle Inhalt der QuelleFatunmbi, E. O., und O. O. Akanbi. „Magnetohydrodynamic Flow and Heat Transfer Characteristics in Micropolar-Casson Fluid over a Stretching Surface with Temperature-dependent Material Properties.“ In 28th iSTEAMS Multidisciplinary Research Conference AIUWA The Gambia. Society for Multidisciplinary and Advanced Research Techniques - Creative Research Publishers, 2021. http://dx.doi.org/10.22624/aims/isteams-2021/v28n2p7.
Der volle Inhalt der QuelleMingyang Pan, Xiandong Zhu, Liancun Zheng und Xinhui Si. „Multiple solutions of the micropolar fluid equation in a porous channel“. In 2014 ISFMFE - 6th International Symposium on Fluid Machinery and Fluid Engineering. Institution of Engineering and Technology, 2014. http://dx.doi.org/10.1049/cp.2014.1228.
Der volle Inhalt der QuelleAl-Sharifi, H. A. M. „Numerical solutions of equations Eyring-Powell micropolar fluid across stretching surface“. In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114694.
Der volle Inhalt der QuelleHazbavi, Abbas, und Sajad Sharhani. „Micropolar Fluid Flow Between Two Inclined Parallel Plates“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72528.
Der volle Inhalt der QuelleGhasvari-Jahromi, H., Gh Atefi, A. Moosaie und S. Hormozi. „Analytical Solution of Turbulent Problems Using Governing Equation of Cosserat Continuum Model“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15837.
Der volle Inhalt der Quelle