Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microfluidic circuit“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microfluidic circuit" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Microfluidic circuit"
Babikian, Sarkis, Brian Soriano, G. P. Li und Mark Bachman. „Laminate Materials for Microfluidic PCBs“. International Symposium on Microelectronics 2012, Nr. 1 (01.01.2012): 000162–68. http://dx.doi.org/10.4071/isom-2012-ta54.
Der volle Inhalt der QuellePaegel, Brian M., William H. Grover, Alison M. Skelley, Richard A. Mathies und Gerald F. Joyce. „Microfluidic Serial Dilution Circuit“. Analytical Chemistry 78, Nr. 21 (November 2006): 7522–27. http://dx.doi.org/10.1021/ac0608265.
Der volle Inhalt der QuelleSwank, Zoe, und Sebastian J. Maerkl. „CFPU: A Cell-Free Processing Unit for High-Throughput, Automated In Vitro Circuit Characterization in Steady-State Conditions“. BioDesign Research 2021 (17.03.2021): 1–11. http://dx.doi.org/10.34133/2021/2968181.
Der volle Inhalt der QuelleWang, Dai-Hua, Lian-Kai Tang, Yun-Hao Peng und Huai-Qiang Yu. „Principle and structure of a printed circuit board process–based piezoelectric microfluidic pump integrated into printed circuit board“. Journal of Intelligent Material Systems and Structures 30, Nr. 17 (30.08.2019): 2595–604. http://dx.doi.org/10.1177/1045389x19869519.
Der volle Inhalt der QuelleStojanović, Paroški, Samardžić, Radovanović und Krstić. „Microfluidics-Based Four Fundamental Electronic Circuit Elements Resistor, Inductor, Capacitor and Memristor“. Electronics 8, Nr. 9 (29.08.2019): 960. http://dx.doi.org/10.3390/electronics8090960.
Der volle Inhalt der QuelleDong, Liangwei, und Yueli Hu. „Microfluidic networks embedded in a printed circuit board“. Modern Physics Letters B 31, Nr. 19-21 (27.07.2017): 1740017. http://dx.doi.org/10.1142/s0217984917400176.
Der volle Inhalt der QuelleNa, Sangcheol, Myeongwoo Kang, Seokyoung Bang, Daehun Park, Jinhyun Kim, Sang Jun Sim, Sunghoe Chang und Noo Li Jeon. „Microfluidic neural axon diode“. TECHNOLOGY 04, Nr. 04 (Dezember 2016): 240–48. http://dx.doi.org/10.1142/s2339547816500102.
Der volle Inhalt der QuelleZhao, San Ping. „A Pressure Sensor with Electrical Readout Based on IL Electrofluidic Circuit“. Applied Mechanics and Materials 66-68 (Juli 2011): 1936–41. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1936.
Der volle Inhalt der QuelleWang, Shaoxi, Yue Yin und Xiaoya Fan. „The Chip Cooling Model and Route Optimization with Digital Microfluidics“. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 37, Nr. 1 (Februar 2019): 107–13. http://dx.doi.org/10.1051/jnwpu/20193710107.
Der volle Inhalt der QuelleCartas-Ayala, Marco A., Mohamed Raafat und Rohit Karnik. „Microfluidic Circuits: Self-Sorting of Deformable Particles in an Asynchronous Logic Microfluidic Circuit (Small 3/2013)“. Small 9, Nr. 3 (01.02.2013): 333. http://dx.doi.org/10.1002/smll.201370015.
Der volle Inhalt der QuelleDissertationen zum Thema "Microfluidic circuit"
Balagadde, Frederick Kiguli Phillips Rob Quake Stephen R. „Microfluidic technolgies for continuous culture and genetic circuit characterization /“. Diss., Pasadena, Calif. : Caltech, 2007. http://resolver.caltech.edu/CaltechETD:etd-06112007-102627.
Der volle Inhalt der QuelleRaafat, Mohamed Salem. „Self-sorting of deformable particles in a microfluidic circuit“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62536.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 54-57).
In this thesis, a new microfluidic device is presented for sorting of deformable particles based on the hydrodynamic resistance induced in a microchannel. Hydrodynamic resistance can be related to physical properties, including size and deformability of the particle, and can also be influenced by particle-wall interactions, hence allowing sorting based on any of these characteristics. This device could find application in cell sorting and bioseparation for therapeutics, research, and point-of-care diagnostics, as well as in sorting of droplets and emulsions for research and industrial applications (e.g., pharmaceutics, food industry, etc.). The device design is carried out using an equivalent resistance model, and numerical simulations are used to validate the design. The device is fabricated in PDMS, flow velocities are characterized using particle streak velocimetry, and sorting experiments are conducted to sort deformable gelatin particles according to size, and droplets of water and glycerol according to deformability. A sorting resolution of approximately 1 pm was obtained when sorting based on size, and droplets of water and glycerol were sorted into separate streams when sorting based on deformability. The main strength of the device over existing technology lies in its simplicity: sorting is carried out passively in the microfluidic circuit, eliminating the need for additional detection or sorting modules. Moreover, the device could be easily customized to change the sorting parameter or the sorting threshold, and multiple devices can be combined in parallel (to increase throughput) or in series (to increase resolution).
by Mohamed Salem Raafat.
S.M.
Sudarsan, Arjun Penubolu. „Fabrication of masters for microfluidic devices using conventional printed circuit technology“. Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969/146.
Der volle Inhalt der QuelleSharma, Gunjana. „Heterogeneous Technologies for Microfluidic Systems“. Doctoral thesis, Uppsala universitet, Mikrosystemteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-131109.
Der volle Inhalt der QuelleBohunský, Tomáš. „Kavitace na mikrofluidické clonce“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444292.
Der volle Inhalt der QuelleBakhshiani, Mehran. „A SELF-SUSTAINED MINIATURIZED MICROFLUIDIC-CMOS PLATFORM FORBROADBAND DIELECTRIC SPECTROSCOPY“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1436266857.
Der volle Inhalt der QuelleTang, Qi, und Qi Tang. „Active Metamaterial: Gain and Stability, and Microfluidic Chip for THz Cell Spectroscopy“. Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/623025.
Der volle Inhalt der QuellePalsandram, Naveenkumar Srinivasaiah. „INTERCONNECTION, INTERFACE AND INSTRUMENTATION FOR MICROMACHINED CHEMICAL SENSORS“. Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3297.
Der volle Inhalt der QuelleM.S.E.E.
Department of Electrical and Computer Engineering
Engineering and Computer Science
Electrical Engineering
Faye, Djibril. „Détection fluorimétrique en circuit microfluidique des ions Pb2+, Hg2+ et Cd2+ en milieu aqueux“. Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2011. http://tel.archives-ouvertes.fr/tel-00722906.
Der volle Inhalt der QuelleXie, Jianyong. „Electrical-thermal modeling and simulation for three-dimensional integrated systems“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50307.
Der volle Inhalt der QuelleBücher zum Thema "Microfluidic circuit"
Paik, Philip Y. Adaptive cooling of integrated circuits using digital microfluidics. Norwood, MA: Artech House, 2007.
Den vollen Inhalt der Quelle findenYang, Zhao. Design and Testing of Digital Microfluidic Biochips. New York, NY: Springer New York, 2013.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. Nonlinear Optics and Laser Emission through Random Media. Dordrecht: Springer Netherlands, 2012.
Den vollen Inhalt der Quelle findenBushby, Richard J. Liquid Crystalline Semiconductors: Materials, properties and applications. Dordrecht: Springer Netherlands, 2013.
Den vollen Inhalt der Quelle findenAdaptive Cooling of Integrated Circuits Using Digital Microfluidics. Artech House Publishers, 2007.
Den vollen Inhalt der Quelle findenYang, Zhao, und Krishnendu Chakrabarty. Design and Testing of Digital Microfluidic Biochips. Springer, 2014.
Den vollen Inhalt der Quelle findenFolli, Viola. Nonlinear Optics and Laser Emission through Random Media. Springer, 2014.
Den vollen Inhalt der Quelle findenO'Neill, Mary, Stephen M. Kelly und Richard J. Bushby. Liquid Crystalline Semiconductors: Materials, properties and applications. Ingramcontent, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Microfluidic circuit"
Richter, Stefan, Nam-Trung Nguyen, Ansgar Wego und Lienhard Pagel. „Microfluidic Devices on Printed Circuit Board“. In Microsystems, 185–217. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3534-5_7.
Der volle Inhalt der QuelleFloryan, Caspar, David Issadore und Robert M. Westervelt. „Programmable Hybrid Integrated Circuit/Microfluidic Chips“. In Point-of-Care Diagnostics on a Chip, 23–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29268-2_2.
Der volle Inhalt der QuellePaegel, Brian M., Stephanie H. I. Yeung, James R. Scherer und Richard A. Mathies. „Microfluidic Circuit for Integrated DNA Sequencing Product Purification and Analysis“. In Micro Total Analysis Systems 2002, 940–42. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0504-3_112.
Der volle Inhalt der QuelleSun, Xiaona. „Manipulation of Pneumatic Components in Microfluidic Chips by Circuit Based on Single-Chip Microcomputer“. In Lecture Notes in Electrical Engineering, 475–82. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01273-5_52.
Der volle Inhalt der QuelleDutta, Prashanta, Keisuke Horiuchi und Talukder Z. Jubery. „Microfluidic Circuits“. In Encyclopedia of Microfluidics and Nanofluidics, 1901–9. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_930.
Der volle Inhalt der QuelleDutta, Prashanta, Keisuke Horiuchi und Talukder Z. Jubery. „Microfluidic Circuits“. In Encyclopedia of Microfluidics and Nanofluidics, 1–12. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_930-2.
Der volle Inhalt der QuelleRamakrishnan, Ramesh, Jian Qin, Robert C. Jones und L. Suzanne Weaver. „Integrated Fluidic Circuits (IFCs) for Digital PCR“. In Microfluidic Diagnostics, 423–31. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-134-9_27.
Der volle Inhalt der QuelleLee, Hakho, Donhee Ham und Robert M. Westervelt. „CMOS/Microfluidic Hybrid Systems“. In Series on Integrated Circuits and Systems, 77–101. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-68913-5_4.
Der volle Inhalt der QuelleYadav, Supriya, Mahesh Kumar, Kulwant Singh, Niti Nipun Sharma und Jamil Akhtar. „Flexible Microfluidics Biosensor Technology“. In Electrical and Electronic Devices, Circuits and Materials, 377–86. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis: CRC Press, 2021. http://dx.doi.org/10.1201/9781003097723-23.
Der volle Inhalt der QuelleEdel, Joshua B., Robin Fortt, John C. de Mello und Andrew J. de Mello. „Controlled Quantum Dot Synthesis within Microfluidic Circuits“. In Micro Total Analysis Systems 2002, 772–74. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0504-3_57.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Microfluidic circuit"
Wu, Liang Li, Sarkis Babikian, Guann-Pyng Li und Mark Bachman. „Microfluidic printed circuit boards“. In 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, 2011. http://dx.doi.org/10.1109/ectc.2011.5898721.
Der volle Inhalt der QuelleMikulchenko, Oleg, und Kartikeya Mayaram. „Coupled circuit and microfluidic device simulation“. In 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-877.
Der volle Inhalt der QuellePerdigones, Francisco, Antonio Luque, Carmen Aracil und Jose Manuel Quero. „Microfluidic circuit for flow rate auto-regulation“. In IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2014. http://dx.doi.org/10.1109/iecon.2014.7048833.
Der volle Inhalt der QuelleBucolo, Maide, Arturo Buscarino, Luigi Fortuna, Salvina Gagliano und Giovanna Stella. „Microfluidic sensors based on memristive circuits synchronization“. In 2020 European Conference on Circuit Theory and Design (ECCTD). IEEE, 2020. http://dx.doi.org/10.1109/ecctd49232.2020.9218414.
Der volle Inhalt der QuelleGalambos, Paul, und Conrad James. „Surface Micromachined Microfluidics: Example Microsystems, Challenges and Opportunities“. In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73491.
Der volle Inhalt der QuelleTung, Yi-Chung, Tse-Ang Lee und Wei-Hao Liao. „ELECTROFLUIDIC CIRCUIT PRESSURE SENSOR-INTEGRATED MICROFLUIDIC VISCOMETER“. In The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04495.
Der volle Inhalt der QuelleKubo, Masahiro, Xiaofeng Li, Choongik Kim, Michinao Hashimoto, Benjamin J. Wiley, Donhee Ham und George M. Whitesides. „Stretchable microfluidic electric circuit applied for radio frequency antenna“. In 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, 2011. http://dx.doi.org/10.1109/ectc.2011.5898722.
Der volle Inhalt der QuelleFeinerman, Oron, Mor Sofer und Elishai Ezra Tsur. „Computer-Aided Design of Valves-Integrated Microfluidic Layouts Using Parameter-Guided Electrical Models“. In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83362.
Der volle Inhalt der QuelleFrijns, Arjan J. H., Zhipeng Liu, Roy J. S. Derks, Michel F. M. Speetjens und Anton A. van Steenhoven. „Integrated Microfluidic Pumping for Cooling Applications“. In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73147.
Der volle Inhalt der QuelleBabikian, Sarkis, Makoto Jinsenji, Mark Bachman und G. P. Li. „Surface Mount Electroosmotic Pump for Integrated Microfluidic Printed Circuit Boards“. In 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). IEEE, 2018. http://dx.doi.org/10.1109/ectc.2018.00079.
Der volle Inhalt der Quelle