Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microenvironnement tumoral immun“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microenvironnement tumoral immun" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Microenvironnement tumoral immun"
Augustin, Jérémy. „Caractérisation du microenvironnement tumoral immunitaire des carcinomes hépatocellulaires réséqués“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS409.pdf.
Der volle Inhalt der QuelleHepatocellular carcinoma (HCC) shows globally low response to immunotherapy and HCC immune microenvironment is not well characterized. Our objective was to connect immune, viral and morphologic aspects of HCC and understand how they intervene in sensitivity to immune checkpoint blockade. In this study, we performed a transcriptomic analysis of onco-immune genes to characterize the tumor microenvironment of 170 HCC: 23% hepatitis B (HBV), 29% hepatitis C (HCV), 16% metabolic syndrome, 17% alcohol consumption related, and 14% of undetermined etiology. We correlated gene expression profiles with clinical, morphological and viral features. We did not observe difference of immune microenvironment at a global scale, between etiologies. But within HBV group, we identified 3 Clusters. None of of these clusters expressed ϒ-interferon (compared to 25% of HCC of all etiologies combined). Cluster 1 showed an ambivalent « hot » and exhausted profile with higher expression of exhaustion markers but lower densities of T lymphocytes by immunostaining. This Cluster was associated with HBV transcription and patients from this Cluster showed higher recurrence. Cluster 2 was enriched with macrotrabecular massive subtype and was immunologically “cold” and was also associated with higher recurrence. At last, Cluster 3 was developed much more on cirrhotic liver and showed an intermediate level of immune cells infiltration, with no marker of exhaustion. It was associated with lower recurrence. In conclusion we highlight viral related specificities within HBV HCC, associated with prognostic significance
Leruste, Amaury. „Immune context of malignant rhabdoid tumors : description and identification of new therapeutic targets“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS050.
Der volle Inhalt der QuelleRhabdoid tumors (RT) are highly undifferentiated cancers occurring in infancy and early childhood, with a median age at diagnosis about 20 months. These tumors are characterized by the biallelic inactivation of SMARCB1 tumor suppressor gene, core member of the SWI/SNF complex, one major chromatin remodeling actor, in an otherwise highly stable genome. The prognosis of RT is dismal with overall survival hardly reaching 30% in most series, despite particularly aggressive conventional treatment. Immunotherapy approaches has gained a striking success within some adult cancer types and recent analyses of immune cell content of pediatric cancers don’t reveal a high rate of infiltrated tumors, except in few tumor types such as intracranial rhabdoid tumors. Then, we conducted a comprehensive analysis of the immune context of both human RT cohorts and a mouse RT model, including at single cell level. We identified a high recurrence of infiltrated tumors, in a RT-subgroup related manner, composed of both myeloid cells including cells with immune suppressive phenotypes, and T cells with notably a tissue resident memory phenotype demonstrating a high clonal expansion highly suggestive of immunogenicity. We identified common targetable immune populations between human and mouse RTs, and found that targeting both T and myeloid infiltrating cells was able to induce complete anti-tumor response with induced memory, confirming the immunogenic properties of RTs, and identifying new therapeutic strategies of clinical relevance. We finally identified that RTs were the site of SMARCB1-dependent endogenous retroviruses reexpression, with subsequent activation of interferon signaling, likely triggering the immune response in the context of RT, and providing a basis of non-coding genome-driven immunogenicity for these tumors
Thomas, Audrey. „Effet sur le microenvironnement tumoral d’une modulation pharmacologique du stress oxydant“. Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05T086/document.
Der volle Inhalt der QuelleSeveral reports have demonstrated the involvement of reactive oxygen species (ROS) in carcinogenesis, through promotion of cancer cell proliferation and invasion. But ROS could also have consequences on non cancerous cells which are part of the tumor microenvironment, such as immune cells. Therefore, a pharmacological modulation of oxidative stress can induce a cytotoxic effect on tumor cells but its consequences on microenvironment are unknown. The aim of our studies was to evaluate the effects of a pharmacological modulation of oxidative stress on immune cells from the tumor microenvironment. At low dose, Arsenic trioxide (As203), an oxidative stress modulator, was shown to exert antitumor effects in colon tumor-bearing mice. We observed that this effect was related to As203-induced regulatory T cells (Tregs) -selective depletion in vitro and in vivo and was mediated by oxidative and nitrosative bursts. The differential effect of As203 on Tregs versus other CD4 cells was related to difference in the cells’redox status. We also observed that vinorelbine, an anticancer agent, could interfere with the antitumor immune response. We showed that vinorelbine could alter the function of immune cells surrounding tumor cells by a bystander toxic effect against tumor effector cells. In vivo experiment in A549 tumor bearing nude mice showed that adoptive transfer of A549 immune splenocytes was not able to delay tumor growth when vinorelbine-pretreated A549 cells were used for immunization. This effect was mediated by ROS and was inhibited by an oxidative stress modulator, mangafodipir, which restored antitumor immune function. Therefore, our work showed that oxidative stress modulators can influence tumor microenvironment and more specifically, immune cells. They could be used to restore antitumor immune response
Bod, Lloyd. „Rôle de l'enzyme IL4-induced gene 1 (IL4l1) en contexte tumoral et sur la physiologie des lymphocytes B“. Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB107/document.
Der volle Inhalt der QuelleImmunotherapy is one of the most promising advance in cancer treatments. It remains essential to identify new targets to maximize the anti-tumor immune response. Enzymes involved in amino acid metabolism have been described to impede these responses and thus promote tumor progression. They became good therapeutic targets. IL-4-induced gene 1 (IL4I1) is a phenylalanine oxidase which, over the last decade, was unveiled as a real tool for peripheral tolerance. However its functions remain largely unexplored. During my PhD thesis, I studied the immunoregulatory properties of IL4I1 in a tumoral context involving a spontaneous melanoma model (Ret mice), but also in the B cell physiology. First, my results highlight that the IL4I1 enzymatic activity is positively correlated with disease aggressiveness in the spleen of Ret mice. Interestingly, genetic inactivation of IL4I1 in this model (RetIL4I1KO) delayed the development of both primary tumor and metastatic dissemination. We demonstrate that IL4I1, mainly expressed by myeloid cells, has the ability to shape the immune compartment within the tumor microenvironment, through recruitment of myeloid cells instead of activated T cells. Furthermore, my data in mice deficient for IL4I1 (IL4I1KO) have emphasized a crucial role of IL4I1 in regulating many steps of B cell biology. Indeed, IL4I1KO mice exhibit an accelerated B cell egress from the bone marrow, resulting in the accumulation of peripheral follicular B cells. These mice have a high serum level of natural immunoglobulins and auto-reactive antibodies. We also demonstrate that IL4I1 controls the germinal center reaction, plasma cell differentiation and specific antibody production in response to a T-dependent antigen immunization. In vitro, the absence of IL4I1 in B cells increases their proliferation and the activation of signaling pathways upon B cell receptor (BCR) engagement. Thus, our results reveal a key role of IL4I1, which negatively controls the BCR-dependent activation. Regarding these effects of IL4I1 on B cell biology, it remains important to evaluate whether the BCR-dependent hyperreactivity in IL4I1KO mice contributes in the tumor control
Jary, Marine. „Analyse du microenvironnement et de l'oncogenèse des cancers colorectaux surexprimant l’Angiopoiétine 2“. Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCE016.
Der volle Inhalt der QuelleColorectal cancer (CRC) is a severe and frequent disease, with important survival improvement due to therapeutic new approaches and surgical methods, even in metastatic setting. It is an heterogeneous entity, and personalized strategies are mandated, whereas few predictive and prognostic biomarkers are available in practical care. Molecular classifications are useful to better understand CRC biological characteristics, but they do not have predictive values, and seem to be inadequate for metastatic setting. Seric biomarkers are attractive since they could recapitulate tumor features, while being simpler and less expansive. There is a need to investigate surrogacy biomarkers illustrating intra tumoral microenvironment, in order to adapt treatment strategies.This thesis is about the clinical and molecular characterization of Angiopoietin 2 (ANGPT2) associated colorectal cancer. Assessment of microenvironment and peripheral immune Th1 response are performed and correlated with this entity.Prognostic value of ANGPT2 in metastatic colorectal cancer was studied in the first part of the manuscript. We described that ANGPT2 plasmatic levels were associated with a worst overall survival in metastatic setting. In the second part, using the open source transcriptomic tools, we decided to define the specific molecular signaling pathways correlated to ANGPT2 expression in CRC and its prognostic value in localized CRC. A specific signature was drawn, combining genes associated with stroma, invasion, angiogenesis, and chemo-resistance. Looking for associated secreted proteins, we could identify a seric signature (combining STC1, CD138 and ANGPT2), predictive for chemo-resistance. An negative correlation was observed between ANGPT2 signature and immune response. The last part of the thesis then explored the prognostic value of anti TERT peripheral immune Th1 response in metastatic colorectal cancer (Epitopes-CRC02 study), and validated its beneficial role for predicting OS. A negative correlation was confirmed, in seric measurement between CD4 immune response and ANGPT2.This work paves the way for individualized treatments in tumors harboring ANGPT2 associated characteristics', targeting the stromal and immune microenvironment. This immune and stromal biomonitoring is feasible and have to be associated to futures clinical studies. Future prognostic scores should probably assess the place of these biomarkers in order to improve their discriminant values
De, Vries-Brilland Manon. „Caractérisation du microenvironnement immunitaire des carcinomes papillaires du rein“. Electronic Thesis or Diss., Angers, 2023. http://www.theses.fr/2023ANGE0017.
Der volle Inhalt der QuelleArticle 1: Checkpoint inhibitors in metastatic papillary renal cell carcinoma : papillary Renal Cell Carcinoma (pRCC) is the most common non-clear cell RCC (nccRCC) and a distinct entity, although heterogenous, associated with poor outcomes. The treatment landscape of metastatic pRCC (mpRCC) relied so far on targeted therapies, mimicking previous developments in metastatic clear-cell renal cell carcinoma. However, antiangiogenics as well as mTOR inhibitors retain only limited activity in mpRCC. As development of immune checkpoint inhibitors (ICI) is now underway in patients with mpRCC, we aimed at discussing early activity data and potential for future therapeutic strategies in monotherapy or combination. Expression of immune checkpoints such as PD-L1 and infiltrative immune cells in pRCC could provide insights into their potential immunogenicity, although this is currently poorly described. Based on retrospective and prospective data, efficacy of ICI as single agent remains limited. Combinations with tyrosine-kinase inhibitors, notably with anti-MET inhibitors, harbor promising response rates and may enter the standard of care in untreated patients. Collaborative work is needed to refine the molecular and immune landscape of pRCC, and pursue efforts to set up predictive biomarker-driven clinical trials in these rare tumors. Article 2 : Comprehensive analyses of immune tumor microenvironment in papillary renal cell carcinoma. Background : papillary Renal CellCarcinoma (pRCC) is the most common non-clear cell RCC (nccRCC), and associated with poor outcomes in the metastatic setting. In this study, we aimed to comprehensively evaluate the immune tumor microenvironment (TME) ,largely unknown, of patients with metastatic pRCC and identify potential therapeutic targets. Methods : we performed quantitative gene expression analysis of TME using MCP-counter methodology, on 2 independent cohorts of localized pRCC (n=271 and n=98). We then characterized the TME, using immunohistochemistry (n=38) and RNA-sequencing (RNA-seq) (n=30) on metastatic pRCC from the prospective AXIPAP trial cohort. Results: unsupervised clustering identified 2 "TME subtypes", in each of the cohorts : the “immune-enriched” and the “immune-low”.Within AXIPAP trial cohort, the “immune-enriched” cluster was significantly associated with a worse prognosis according to the median overall survival to 8 months (95%CI, 6-29) versus 37 months (95%CI, 20-NA,p=0.001).The 2 immune signatures, Teff and JAVELIN Renal 101 Immuno signature, predictive of response to immune checkpoint inhibitors (CPI) in ccRCC, were significantly higher in the “immune-enriched” group (adjusted p<0.05). Finally, 5 differentially overexpressed genes were identified, corresponding mainly to B lymphocyte populations. Conclusion : for the first time, using RNA-seqand IHC, we have highlighted a specific immune TME subtype of metastatic pRCC, significantly more infiltrated with T and Bimmune population. This “immune-enriched” group appears to have a worse prognosis and could have a potential predictive value for response to immunotherapy, justifying the confirmation of these results in a cohort of metastatic pRCC treated with CPI and incombination with targeted therapies
Carré, Thibault. „Analyse des bases moléculaires de la résistance tumorale à la cytotoxicité spécifique et naturelle dans le contexte microenvironnemental“. Thesis, Paris 11, 2012. http://www.theses.fr/2012PA11T057.
Der volle Inhalt der QuelleDuring antitumor immune response, cancer cells genetic instability combined with immune system selective pressure may drive to the emergence of tumor variant resistant to lysis by cytotoxic effector cells through a phenomenon called immunoediting. A better understanding of those mechanisms putatively involved in tumor susceptibility to natural and/or specific lysis would enable new integrative and more effective immunotherapeutic strategies. In this context, we studied a model of resistance to specific lysis linked to actin cytoskeleton remodeling (i). We showed that combined inhibition of actin interacting protein (caldesmone, ezrin, radixin and moesin) reduced tumor cells susceptibility to cytotoxic T lymphocytes (CTLs) lysis. Moreover, we identified microRNAs differentially expressed between parental cell line and resistant variant and are currently studying their impact on tumor susceptibility to CTLs lysis. In order to depict the role of innate immunity Natural Killer (NK) cells selective pressure, on tumor cells and on the emergence of resistant variants, we also established a maintained coculture model of melanoma cells with NK cells (ii). Selected cells obtained were resistant to NK cells-mediated lysis (but still susceptible to CTLs-mediated specific lysis) and formed less contact and immune synapse with NK cells than parental cell line. Transcriptomic analysis revealed the reduced expression of B7-H6 (ligand of an NK cells activating receptor) partially contributing to the resistance phenotype. The expression of several genes involved in migration/invasion/adhesion is also modulated and some cell characteristics (cell growth in semi-solid medium, adhesion, migration) tend to reflect the acquisition through coculture of an increased aggressiveness. Finally, we evaluated the impact of connexin-43 (Cx43), involved in the establishment of Gap Junctions (GJs), on antitumor response (iii). We showed that despite localization at the immune synapse between tumor target cell and CTL, Cx43 and GJs do not modulate susceptibility to CTL-mediated specific lysis. Nevertheless, GJs contribute to the emergence of highly reactive specific CD8+ T lymphocytes following antigen stimulation
Vey, Nelly. „Cellules dendritiques plasmacytoïdes et immunosurveillance ou échappement immunitaire dans le cancer du sein : impact des signaux activateurs versus inhibiteurs du microenvironnement tumoral“. Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10255.
Der volle Inhalt der QuelleBreast cancer are disease impacting immune system whose play role during tumorigenesis, to detect and eliminate malign cells (immunosurveillance) or promote tumoral development (immunosubversion). Efforts to define new therapeutic strategies revealed that restoring anti-tumor immunity in patients would improve their prognosis. During my thesis, first, we demonstrated the existence of stimulatory and inhibitory signals of pDCs in the breast, which give the pDCs a role in immunosurveillance and immune escape of breast cancer, respectively. We showed that TGF-beta and TNF-alpha are involved in the functional inhibition of TApDC repressing IRF-7 expression and activation. Secondly, we showed i) the presence of [DNA LL37] complex produced by neutrophils in tumors that can induce the production of IFN-alpha by pDCs, ii) the expression of type I IFN associated genes in breast tumors and iii) a major role of IFN-I pathway in immunosurveillance of mammary tumors in mice. In addition, in mice, preliminary data suggest that pDC could play a role in anti-tumor immunosurveillance in vivo. The work presented in this thesis provide new data on the role of pDCs in immunosurveillance of breast cancers, and open new anti-tumor immunotherapy strategies targeting pDCs
Gonçalves, Maia Maria João. „Le syndrome Xeroderma Pigmentosum : Un nouveau modèle pour l’étude du rôle des fibroblastes dans la modulation de la réponse immunitaire innée contre les cellules cutanées cancéreuses“. Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4037.
Der volle Inhalt der QuelleSkin cancer etiology is related to genetic mutations arising after ultraviolet (UV) sun exposure. The propagation of cancer cells is also dependent of a crosstalk with cells present in the surrounding microenvironment, mainly cancer associated fibroblasts (CAF) and immune cells. Xeroderma pigmentosum (XP) is a genetic disease that comprises seven groups of genetic complementation (XP-A to XP-G). XP patients present a default in the mechanism responsible for the repair of UV-induced DNA lesions. They are prone to develop skin cancers with high frequencies early in their life. XP-C is the most represented complementation group in Europe and in XP-C patients squamous cell carcinoma (SCC) are more frequent than basal cell carcinoma (BCC) (ratio 5:1). SCC have high metastatic potential compared to BCC. Previous studies suggested that the immune responses in XP patients could be altered with defects in their NK lytic activity and a decrease in the levels of circulating T lymphocytes. The main objective of this thesis was to identify microenvironment factors that could contribute to the progression of aggressive skin cancers using XP-C disease cells as a model of skin cancer susceptibility. Comparative transcriptomic analysis of WT and XP-C dermal patient’s fibroblasts revealed that CLEC2A, a ligand of the activating NK receptor NKp65 implicated in the activation of the innate immune system, is expressed in WT fibroblasts and absent in XP-C fibroblasts. Additional work showed that CLEC2A level is decreased in WT fibroblasts during replicative senescence, is absent in CAF and SCC, and is down regulated by soluble factors secreted by SCC cells. These results suggest that the loss of CLEC2A may induce a deficit of NK cell activation in the tumor microenvironment of SCC and in the dermis of XP-C patients. Elaboration of 3D skin culture models including NK cells and, in the presence or absence of blocking anti-CLEC2A antibody, allowed us to show that CLEC2A/NKp65 interaction regulates SCC cells invasion through a crosstalk between fibroblasts and NK cells. Our results suggest that the expression of CLEC2A in fibroblasts contributes to skin immune surveillance while, conversely, its absence under yet unidentified factors, favors the development of aggressive cancers in XP-C patients. CLEC2A could be a potential target in the fight against SCC progression
Arakelian, Tsolère. „Impact of Targeting the Autophagy Related Gene Beclin 1 on the Immune Landscape of Melanoma“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS193.
Der volle Inhalt der QuelleImmune Checkpoint Blockades (ICBs)-based immunotherapy has emerged as a promising treatment for melanoma patients; however only a small subset of patients reaps a long term benefit. One of the major challenges to enhance the efficacy and extend the benefit of ICBs to non-responder patients is to design innovative approaches allowing the switch of “immune desert cold tumors” to “immune infiltrated hot tumors" which are eligible for ICB-based therapies. Here, we investigated the impact of targeting the early autophagy gene Beclin1 on the immune landscape of B16-F10 melanoma tumors. We found that targeting Beclin1 (Becn1-) significantly inhibited B16-F10 tumor growth and increased the infiltration of CD45+ leukocytes into the tumor bed. Immune phenotyping revealed an increased infiltration of active Natural Killer (NK) cells, inflammatory and resident type 1 macrophages, dendritic cells, and active CD8+ T lymphocytes. The inhibition of Becn1- tumor growth was no longer observed by depleting host CD8+ T cells, thus highlighting their major role in the control of Becn1- B16-F10 tumor development. We showed that Beclin1-dependent regulation of the immune landscape was associated with profound modulation of the cytokine/chemokine network in the tumor microenvironment (TME). Importantly, we revealed that Becn1- tumors displayed an inflammatory cytokine signature (comprised, but not restricted to, CCL5, CXCL10 and IFNg) that could be responsible for the switch from cold non T-inflamed to hot T-inflamed tumors. Mechanistically, we reported that the overexpression of IFNg in Becn1- TME was responsible for the induction of Programed Death ligand-1 (PD-L1) on tumor cells through the activation of JAK/STATs pathway. Overall, this study highlights Beclin1 as a valuable target, able to drive immune effectors cells into the melanoma tumors by inducing an inflammatory signature. This study provides the proof of concept for combining drugs inhibiting early autophagy process along with ICBs as a cutting-edge approach to improve their efficacy