Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Microdystrophin.

Zeitschriftenartikel zum Thema „Microdystrophin“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Microdystrophin" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Cernisova, Viktorija, Ngoc Lu-Nguyen, Jessica Trundle, Shan Herath, Alberto Malerba und Linda Popplewell. „Microdystrophin Gene Addition Significantly Improves Muscle Functionality and Diaphragm Muscle Histopathology in a Fibrotic Mouse Model of Duchenne Muscular Dystrophy“. International Journal of Molecular Sciences 24, Nr. 9 (03.05.2023): 8174. http://dx.doi.org/10.3390/ijms24098174.

Der volle Inhalt der Quelle
Annotation:
Duchenne muscular dystrophy (DMD) is a rare neuromuscular disease affecting 1:5000 newborn males. No cure is currently available, but gene addition therapy, based on the adeno-associated viral (AAV) vector-mediated delivery of microdystrophin transgenes, is currently being tested in clinical trials. The muscles of DMD boys present significant fibrotic and adipogenic tissue deposition at the time the treatment starts. The presence of fibrosis not only worsens the disease pathology, but also diminishes the efficacy of gene therapy treatments. To gain an understanding of the efficacy of AAV-based microdystrophin gene addition in a relevant, fibrotic animal model of DMD, we conducted a systemic study in juvenile D2.mdx mice using the single intravenous administration of an AAV8 system expressing a sequence-optimized murine microdystrophin, named MD1 (AAV8-MD1). We mainly focused our study on the diaphragm, a respiratory muscle that is crucial for DMD pathology and that has never been analyzed after treatment with AAV-microdystrophin in this mouse model. We provide strong evidence here that the delivery of AAV8-MD1 provides significant improvement in body-wide muscle function. This is associated with the protection of the hindlimb muscle from contraction-induced damage and the prevention of fibrosis deposition in the diaphragm muscle. Our work corroborates the observation that the administration of gene therapy in DMD is beneficial in preventing muscle fibrosis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Brown, K., M. Lawlor, D. Golebiowski, P. Gonzalez, V. Ricotti, J. Schneider und C. Morris. „Quantification of microdystrophin and correlation to circulating biomarkers“. Neuromuscular Disorders 27 (Oktober 2017): S214. http://dx.doi.org/10.1016/j.nmd.2017.06.431.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hersh, Jessica, José Manuel Condor Capcha, Camila Iansen Irion, Guerline Lambert, Mauricio Noguera, Mohit Singh, Avinash Kaur et al. „Peptide-Functionalized Dendrimer Nanocarriers for Targeted Microdystrophin Gene Delivery“. Pharmaceutics 13, Nr. 12 (15.12.2021): 2159. http://dx.doi.org/10.3390/pharmaceutics13122159.

Der volle Inhalt der Quelle
Annotation:
Gene therapy is a good alternative for determined congenital disorders; however, there are numerous limitations for gene delivery in vivo including targeted cellular uptake, intracellular trafficking, and transport through the nuclear membrane. Here, a modified G5 polyamidoamine (G5 PAMAM) dendrimer–DNA complex was developed, which will allow cell-specific targeting to skeletal muscle cells and transport the DNA through the intracellular machinery and the nuclear membrane. The G5 PAMAM nanocarrier was modified with a skeletal muscle-targeting peptide (SMTP), a DLC8-binding peptide (DBP) for intracellular transport, and a nuclear localization signaling peptide (NLS) for nuclear uptake, and polyplexed with plasmid DNA containing the GFP-tagged microdystrophin (µDys) gene. The delivery of µDys has been considered as a therapeutic modality for patients suffering from a debilitating Duchenne muscular dystrophy (DMD) disorder. The nanocarrier–peptide–DNA polyplexes were prepared with different charge ratios and characterized for stability, size, surface charge, and cytotoxicity. Using the optimized nanocarrier polyplexes, the transfection efficiency in vitro was determined by demonstrating the expression of the GFP and the µDys protein using fluorescence and Western blotting studies, respectively. Protein expression in vivo was determined by injecting an optimal nanocarrier polyplex formulation to Duchenne model mice, mdx4Cv. Ultimately, these nanocarrier polyplexes will allow targeted delivery of the microdystrophin gene to skeletal muscle cells and result in improved muscle function in Duchenne muscular dystrophy patients.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ho, Peggy P., Lauren J. Lahey, Foteini Mourkioti, Peggy E. Kraft, Antonio Filareto, Moritz Brandt, Klas E. G. Magnusson et al. „Engineered DNA plasmid reduces immunity to dystrophin while improving muscle force in a model of gene therapy of Duchenne dystrophy“. Proceedings of the National Academy of Sciences 115, Nr. 39 (04.09.2018): E9182—E9191. http://dx.doi.org/10.1073/pnas.1808648115.

Der volle Inhalt der Quelle
Annotation:
In gene therapy for Duchenne muscular dystrophy there are two potential immunological obstacles. An individual with Duchenne muscular dystrophy has a genetic mutation in dystrophin, and therefore the wild-type protein is “foreign,” and thus potentially immunogenic. The adeno-associated virus serotype-6 (AAV6) vector for delivery of dystrophin is a viral-derived vector with its own inherent immunogenicity. We have developed a technology where an engineered plasmid DNA is delivered to reduce autoimmunity. We have taken this approach into humans, tolerizing to myelin proteins in multiple sclerosis and to proinsulin in type 1 diabetes. Here, we extend this technology to a model of gene therapy to reduce the immunogenicity of the AAV vector and of the wild-type protein product that is missing in the genetic disease. Following gene therapy with systemic administration of recombinant AAV6-microdystrophin to mdx/mTRG2 mice, we demonstrated the development of antibodies targeting dystrophin and AAV6 capsid in control mice. Treatment with the engineered DNA construct encoding microdystrophin markedly reduced antibody responses to dystrophin and to AAV6. Muscle force in the treated mice was also improved compared with control mice. These data highlight the potential benefits of administration of an engineered DNA plasmid encoding the delivered protein to overcome critical barriers in gene therapy to achieve optimal functional gene expression.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Martin, Paul T., Rui Xu, Louise R. Rodino-Klapac, Elaine Oglesbay, Marybeth Camboni, Chrystal L. Montgomery, Kim Shontz et al. „Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice“. American Journal of Physiology-Cell Physiology 296, Nr. 3 (März 2009): C476—C488. http://dx.doi.org/10.1152/ajpcell.00456.2008.

Der volle Inhalt der Quelle
Annotation:
The cytotoxic T cell (CT) GalNAc transferase, or Galgt2, is a UDP-GalNAc:β1,4- N-acetylgalactosaminyltransferase that is localized to the neuromuscular synapse in adult skeletal muscle, where it creates the synaptic CT carbohydrate antigen {GalNAcβ1,4[NeuAc(orGc)α2, 3]Galβ1,4GlcNAcβ-}. Overexpression of Galgt2 in the skeletal muscles of transgenic mice inhibits the development of muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy. Here, we provide physiological evidence as to how Galgt2 may inhibit the development of muscle pathology in mdx animals. Both Galgt2 transgenic wild-type and mdx skeletal muscles showed a marked improvement in normalized isometric force during repetitive eccentric contractions relative to nontransgenic littermates, even using a paradigm where nontransgenic muscles had force reductions of 95% or more. Muscles from Galgt2 transgenic mice, however, showed a significant decrement in normalized specific force and in hindlimb and forelimb grip strength at some ages. Overexpression of Galgt2 in muscles of young adult mdx mice, where Galgt2 has no effect on muscle size, also caused a significant decrease in force drop during eccentric contractions and increased normalized specific force. A comparison of Galgt2 and microdystrophin overexpression using a therapeutically relevant intravascular gene delivery protocol showed Galgt2 was as effective as microdystrophin at preventing loss of force during eccentric contractions. These experiments provide a mechanism to explain why Galgt2 overexpression inhibits muscular dystrophy in mdx muscles. That overexpression also prevents loss of force in nondystrophic muscles suggests that Galgt2 is a therapeutic target with broad potential applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bostick, Brian, Jin-Hong Shin, Yongping Yue und Dongsheng Duan. „AAV-microdystrophin Therapy Improves Cardiac Performance in Aged Female mdx Mice“. Molecular Therapy 19, Nr. 10 (Oktober 2011): 1826–32. http://dx.doi.org/10.1038/mt.2011.154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Percival, Justin M., Paul Gregorevic, Guy L. Odom, Glen B. Banks, Jeffrey S. Chamberlain und Stanley C. Froehner. „rAAV6-Microdystrophin Rescues Aberrant Golgi Complex Organization in mdx Skeletal Muscles“. Traffic 8, Nr. 10 (12.07.2007): 1424–39. http://dx.doi.org/10.1111/j.1600-0854.2007.00622.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Boehler, Jessica F., Valeria Ricotti, J. Patrick Gonzalez, Meghan Soustek-Kramer, Lauren Such, Kristy J. Brown, Joel S. Schneider und Carl A. Morris. „Membrane recruitment of nNOSµ in microdystrophin gene transfer to enhance durability“. Neuromuscular Disorders 29, Nr. 10 (Oktober 2019): 735–41. http://dx.doi.org/10.1016/j.nmd.2019.08.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shin, Jin-Hong, Xiufang Pan, Chady H. Hakim, Hsiao T. Yang, Yongping Yue, Keqing Zhang, Ronald L. Terjung und Dongsheng Duan. „Microdystrophin Ameliorates Muscular Dystrophy in the Canine Model of Duchenne Muscular Dystrophy“. Molecular Therapy 21, Nr. 4 (April 2013): 750–57. http://dx.doi.org/10.1038/mt.2012.283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pichavant, Christophe, Pierre Chapdelaine, Daniel G. Cerri, Jean-Christophe Dominique, Simon P. Quenneville, Daniel Skuk, Joe N. Kornegay, João CS Bizario, Xiao Xiao und Jacques P. Tremblay. „Expression of Dog Microdystrophin in Mouse and Dog Muscles by Gene Therapy“. Molecular Therapy 18, Nr. 5 (Mai 2010): 1002–9. http://dx.doi.org/10.1038/mt.2010.23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Gregorevic, Paul, James M. Allen, Elina Minami, Michael J. Blankinship, Miki Haraguchi, Leonard Meuse, Eric Finn et al. „rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice“. Nature Medicine 12, Nr. 7 (Juli 2006): 787–89. http://dx.doi.org/10.1038/nm1439.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Danilov, Kirill A., Svetlana G. Vassilieva, Anna V. Polikarpova, Anna V. Starikova, Anna A. Shmidt, Ivan I. Galkin, Alexandra A. Tsitrina, Tatiana V. Egorova, Sergei N. Orlov und Yuri V. Kotelevtsev. „In vitro assay for the efficacy assessment of AAV vectors expressing microdystrophin“. Experimental Cell Research 392, Nr. 2 (Juli 2020): 112033. http://dx.doi.org/10.1016/j.yexcr.2020.112033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Shin, J.-H., Y. Nitahara-Kasahara, H. Hayashita-Kinoh, S. Ohshima-Hosoyama, K. Kinoshita, T. Chiyo, H. Okada, T. Okada und S. Takeda. „Improvement of cardiac fibrosis in dystrophic mice by rAAV9-mediated microdystrophin transduction“. Gene Therapy 18, Nr. 9 (31.03.2011): 910–19. http://dx.doi.org/10.1038/gt.2011.36.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Benabdallah, Basma F., Arnaud Duval, Joel Rousseau, Pierre Chapdelaine, Michael C. Holmes, Eli Haddad, Jacques P. Tremblay und Christian M. Beauséjour. „Targeted Gene Addition of Microdystrophin in Mice Skeletal Muscle via Human Myoblast Transplantation“. Molecular Therapy - Nucleic Acids 2 (2013): e68. http://dx.doi.org/10.1038/mtna.2012.55.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Xiong, Fu, Shaobo Xiao, Meijuan Yu, Wanyi Li, Hui Zheng, Yanchang Shang, Funing Peng et al. „Enhanced effect of microdystrophin gene transfection by HSV-VP22 mediated intercellular protein transport“. BMC Neuroscience 8, Nr. 1 (2007): 50. http://dx.doi.org/10.1186/1471-2202-8-50.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Xiong, F., Y. Xu, H. Zheng, X. Lu, S. Feng, Y. Shang, Y. Li, Y. Zhang, S. Jin und C. Zhang. „Microdystrophin Delivery in Dystrophin-Deficient (mdx) Mice by Genetically-Corrected Syngeneic MSCs Transplantation“. Transplantation Proceedings 42, Nr. 7 (September 2010): 2731–39. http://dx.doi.org/10.1016/j.transproceed.2010.04.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Murray, Jason, Guy Odom, Sigurast Olafsson, Stephen Hauschka, Jeffrey Chamberlain, Farid Moussavi-Harami und Michael Regnier. „AAV-Mediated Delivery of Ribonucleotide Reductase and Microdystrophin Rescues Function in Dystrophic Mice“. Biophysical Journal 114, Nr. 3 (Februar 2018): 541a. http://dx.doi.org/10.1016/j.bpj.2017.11.2956.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Koo, Taeyoung, Takashi Okada, Takis Athanasopoulos, Helen Foster, Shin'ichi Takeda und George Dickson. „Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog“. Journal of Gene Medicine 13, Nr. 9 (September 2011): 497–506. http://dx.doi.org/10.1002/jgm.1602.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Wilton-Clark, Harry, und Toshifumi Yokota. „Antisense and Gene Therapy Options for Duchenne Muscular Dystrophy Arising from Mutations in the N-Terminal Hotspot“. Genes 13, Nr. 2 (28.01.2022): 257. http://dx.doi.org/10.3390/genes13020257.

Der volle Inhalt der Quelle
Annotation:
Duchenne muscular dystrophy (DMD) is a fatal genetic disease affecting children that is caused by a mutation in the gene encoding for dystrophin. In the absence of functional dystrophin, patients experience progressive muscle deterioration, leaving them wheelchair-bound by age 12 and with few patients surviving beyond their third decade of life as the disease advances and causes cardiac and respiratory difficulties. In recent years, an increasing number of antisense and gene therapies have been studied for the treatment of muscular dystrophy; however, few of these therapies focus on treating mutations arising in the N-terminal encoding region of the dystrophin gene. This review summarizes the current state of development of N-terminal antisense and gene therapies for DMD, mainly focusing on exon-skipping therapy for duplications and deletions, as well as microdystrophin therapy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Hamm, Shelby E., Daniel D. Fathalikhani, Katherine E. Bukovec, Adele K. Addington, Haiyan Zhang, Justin B. Perry, Ryan P. McMillan et al. „Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice“. Molecular Therapy - Methods & Clinical Development 23 (Dezember 2021): 460. http://dx.doi.org/10.1016/j.omtm.2021.10.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Hamm, Shelby E., Daniel D. Fathalikhani, Katherine E. Bukovec, Adele K. Addington, Haiyan Zhang, Justin B. Perry, Ryan P. McMillan et al. „Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice“. Molecular Therapy - Methods & Clinical Development 21 (Juni 2021): 144–60. http://dx.doi.org/10.1016/j.omtm.2021.02.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Bostick, Brian, Yongping Yue, Yi Lai, Chun Long, Dejia Li und Dongsheng Duan. „Adeno-Associated Virus Serotype-9 Microdystrophin Gene Therapy Ameliorates Electrocardiographic Abnormalities in mdx Mice“. Human Gene Therapy 19, Nr. 8 (August 2008): 851–56. http://dx.doi.org/10.1089/hum.2008.058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Liu, Mingju, Yongping Yue, Scott Q. Harper, Robert W. Grange, Jeffrey S. Chamberlain und Dongsheng Duan. „Adeno-Associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury“. Molecular Therapy 11, Nr. 2 (Februar 2005): 245–56. http://dx.doi.org/10.1016/j.ymthe.2004.09.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Abmayr, Simone, Paul Gregorevic, James M. Allen und Jeffrey S. Chamberlain. „Phenotypic Improvement of Dystrophic Muscles by rAAV/Microdystrophin Vectors Is Augmented by Igf1 Codelivery“. Molecular Therapy 12, Nr. 3 (September 2005): 441–50. http://dx.doi.org/10.1016/j.ymthe.2005.04.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Bachrach, E., S. Li, A. L. Perez, J. Schienda, K. Liadaki, J. Volinski, A. Flint, J. Chamberlain und L. M. Kunkel. „Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells“. Proceedings of the National Academy of Sciences 101, Nr. 10 (01.03.2004): 3581–86. http://dx.doi.org/10.1073/pnas.0400373101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Willcocks, R., D. Lott, S. Forbes, K. Vandenborne und G. Walter. „399P MRI assessment of microdystrophin gene therapy in DMD: a five year longitudinal study“. Neuromuscular Disorders 43 (Oktober 2024): 104441.127. http://dx.doi.org/10.1016/j.nmd.2024.07.136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Chicoine, LG, CL Montgomery, WG Bremer, KM Shontz, DA Griffin, KN Heller, S. Lewis et al. „Plasmapheresis Eliminates the Negative Impact of AAV Antibodies on Microdystrophin Gene Expression Following Vascular Delivery“. Molecular Therapy 22, Nr. 2 (Februar 2014): 338–47. http://dx.doi.org/10.1038/mt.2013.244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Gregorevic, Paul, Michael J. Blankinship, James M. Allen und Jeffrey S. Chamberlain. „Systemic Microdystrophin Gene Delivery Improves Skeletal Muscle Structure and Function in Old Dystrophic mdx Mice“. Molecular Therapy 16, Nr. 4 (April 2008): 657–64. http://dx.doi.org/10.1038/mt.2008.28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Jørgensen, Louise H., Nancy Larochelle, Kristian Orlopp, Patrick Dunant, Roy W. R. Dudley, Rolf Stucka, Christian Thirion, Maggie C. Walter, Steven H. Laval und Hanns Lochmüller. „Efficient and Fast Functional Screening of Microdystrophin ConstructsIn VivoandIn Vitrofor Therapy of Duchenne Muscular Dystrophy“. Human Gene Therapy 20, Nr. 6 (Juni 2009): 641–50. http://dx.doi.org/10.1089/hum.2008.162.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

XIONG, F., C. ZHANG, S. XIAO, M. LI, S. WANG, M. YU und Y. SHANG. „Construction of Recombinant Adenovirus Including Microdystrophin and Expression in the Mesenchymal Cells of mdx Mice“. Chinese Journal of Biotechnology 23, Nr. 1 (Januar 2007): 27–32. http://dx.doi.org/10.1016/s1872-2075(07)60003-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Hayashita-Kinoh, Hiromi, Posadas-Herrera Guillermo, Yuko Nitahara-Kasahara, Mutsuki Kuraoka, Hironori Okada, Tomoko Chiyo, Shin’ichi Takeda und Takashi Okada. „Improved transduction of canine X-linked muscular dystrophy with rAAV9-microdystrophin via multipotent MSC pretreatment“. Molecular Therapy - Methods & Clinical Development 20 (März 2021): 133–41. http://dx.doi.org/10.1016/j.omtm.2020.11.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Feng, Shan-wei, Fei Chen, Jiqing Cao, Mei-juan Yu, Ying-yin Liang, Xin-ming Song und Cheng Zhang. „Restoration of muscle fibers and satellite cells after isogenic MSC transplantation with microdystrophin gene delivery“. Biochemical and Biophysical Research Communications 419, Nr. 1 (März 2012): 1–6. http://dx.doi.org/10.1016/j.bbrc.2012.01.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Hayashita-Kinoh, Hiromi, Hironori Okada, Yuko N. Kasahara, Tomoko Chiyo, Kiwamu Imagawa, Katsuhiko Tachibana, Shin'ichi Takeda und Takashi Okada. „378. Improved Transduction of Canine X-Linked Muscular Dystrophy with rAAV9-Microdystrophin by Introducing Immune Tolerance“. Molecular Therapy 24 (Mai 2016): S150—S151. http://dx.doi.org/10.1016/s1525-0016(16)33187-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Hayashita-Kinoh, Hiromi, Hironori Okada, Yuko Nitahara-Kasahara, Tomoko Chiyo, Kiwamu Imagawa, Katsuhiko Tachibana, Shin'ichi Takeda und Takashi Okada. „400. Improved Transduction of Canine X-Linked Muscular Dystrophy With rAAV9-Microdystrophin By Using MSCs Pretreatment“. Molecular Therapy 23 (Mai 2015): S158—S159. http://dx.doi.org/10.1016/s1525-0016(16)34009-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Yoshimura, Madoka, Miki Sakamoto, Madoka Ikemoto, Yasushi Mochizuki, Katsutoshi Yuasa, Yuko Miyagoe-Suzuki und Shin'ichi Takeda. „AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype“. Molecular Therapy 10, Nr. 5 (November 2004): 821–28. http://dx.doi.org/10.1016/j.ymthe.2004.07.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Yue, Yongping, Zhenbo Li, Scott Q. Harper, Robin L. Davisson, Jeffrey S. Chamberlain und Dongsheng Duan. „Microdystrophin Gene Therapy of Cardiomyopathy Restores Dystrophin-Glycoprotein Complex and Improves Sarcolemma Integrity in the Mdx Mouse Heart“. Circulation 108, Nr. 13 (30.09.2003): 1626–32. http://dx.doi.org/10.1161/01.cir.0000089371.11664.27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Xiong, Fu, Shaobo Xiao, Funing Peng, Hui Zheng, Meijuan Yu, Yechun Ruan, Wanyi Li et al. „Herpes Simplex Virus VP22 Enhances Adenovirus-Mediated Microdystrophin Gene Transfer to Skeletal Muscles in Dystrophin-Deficient (mdx) Mice“. Human Gene Therapy 18, Nr. 6 (Juni 2007): 490–501. http://dx.doi.org/10.1089/hum.2006.155.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Hayashita-Kinoh, Hiromi, Naoko Yugeta, Hironori Okada, Yuko Nitahara-Kasahara, Tomoko Chiyo, Takashi Okada und Shin'ichi Takeda. „Intra-Amniotic rAAV-Mediated Microdystrophin Gene Transfer Improves Canine X-Linked Muscular Dystrophy and May Induce Immune Tolerance“. Molecular Therapy 23, Nr. 4 (April 2015): 627–37. http://dx.doi.org/10.1038/mt.2015.5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Dastgir, J., S. Rastogi, D. Philips, C. Wilson, N. Boulos, J. Hall, V. Jimenez et al. „P16 An investigational AAV8 gene therapy coding for a novel microdystrophin as a treatment for Duchenne muscular dystrophy“. Neuromuscular Disorders 33 (Oktober 2023): S101. http://dx.doi.org/10.1016/j.nmd.2023.07.143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Filareto, Antonio, Katie Maguire-Nguyen, Qiang Gan, Garazi Aldanondo, Léo Machado, Jeffrey S. Chamberlain und Thomas A. Rando. „Monitoring disease activity noninvasively in the mdx model of Duchenne muscular dystrophy“. Proceedings of the National Academy of Sciences 115, Nr. 30 (09.07.2018): 7741–46. http://dx.doi.org/10.1073/pnas.1802425115.

Der volle Inhalt der Quelle
Annotation:
Duchenne muscular dystrophy (DMD) is a rare, muscle degenerative disease resulting from the absence of the dystrophin protein. DMD is characterized by progressive loss of muscle fibers, muscle weakness, and eventually loss of ambulation and premature death. Currently, there is no cure for DMD and improved methods of disease monitoring are crucial for the development of novel treatments. In this study, we describe a new method of assessing disease progression noninvasively in the mdx model of DMD. The reporter mice, which we term the dystrophic Degeneration Reporter strains, contain an inducible CRE-responsive luciferase reporter active in mature myofibers. In these mice, muscle degeneration is reflected in changes in the level of luciferase expression, which can be monitored using noninvasive, bioluminescence imaging. We monitored the natural history and disease progression in these dystrophic report mice and found that decreases in luciferase signals directly correlated with muscle degeneration. We further demonstrated that this reporter strain, as well as a previously reported Regeneration Reporter strain, successfully reveals the effectiveness of a gene therapy treatment following systemic administration of a recombinant adeno-associated virus-6 (rAAV-6) encoding a microdystrophin construct. Our data demonstrate the value of these noninvasive imaging modalities for monitoring disease progression and response to therapy in mouse models of muscular dystrophy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Schinkel, Stefanie, Ralf Bauer, Raffi Bekeredjian, Rolf Stucka, Désirée Rutschow, Hanns Lochmüller, Jürgen A. Kleinschmidt, Hugo A. Katus und Oliver J. Müller. „Long-Term Preservation of Cardiac Structure and Function After Adeno-Associated Virus Serotype 9-Mediated Microdystrophin Gene Transfer inmdxMice“. Human Gene Therapy 23, Nr. 6 (Juni 2012): 566–75. http://dx.doi.org/10.1089/hum.2011.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Athanasopoulos, Takis, Ian Graham, Capucine Trollet, Helen Foster, Norma Perez, Vanessa Hill, Phillippe Moullier und George Dickson. „907. Development of Recombinant Novel Adeno-Associated Viral (rAAV) Vectors Encoding Optimised Microdystrophin cDNAs for Duchenne Muscular Dystrophy (DMD)“. Molecular Therapy 13 (2006): S349—S350. http://dx.doi.org/10.1016/j.ymthe.2006.08.997.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Le Guiner, C., M. Montus, L. Servais, Y. Cherel, J. Y. Hogrel, P. Carlier, C. Masurier et al. „P.20.13 Gene therapy of Duchenne Muscular Dystrophy using rAAV vectors: Exon skipping and microdystrophin approaches in GRMD dogs“. Neuromuscular Disorders 23, Nr. 9-10 (Oktober 2013): 842–43. http://dx.doi.org/10.1016/j.nmd.2013.06.703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Bourg, Nathalie, Ai Vu Hong, William Lostal, Abbass Jaber, Nicolas Guerchet, Guillaume Tanniou, Fanny Bordier et al. „Co-Administration of Simvastatin Does Not Potentiate the Benefit of Gene Therapy in the mdx Mouse Model for Duchenne Muscular Dystrophy“. International Journal of Molecular Sciences 23, Nr. 4 (11.02.2022): 2016. http://dx.doi.org/10.3390/ijms23042016.

Der volle Inhalt der Quelle
Annotation:
Duchenne muscular dystrophy (DMD) is the most common and cureless muscle pediatric genetic disease, which is caused by the lack or the drastically reduced expression of dystrophin. Experimental therapeutic approaches for DMD have been mainly focused in recent years on attempts to restore the expression of dystrophin. While significant progress was achieved, the therapeutic benefit of treated patients is still unsatisfactory. Efficiency in gene therapy for DMD is hampered not only by incompletely resolved technical issues, but likely also due to the progressive nature of DMD. It is indeed suspected that some of the secondary pathologies, which are evolving over time in DMD patients, are not fully corrected by the restoration of dystrophin expression. We recently identified perturbations of the mevalonate pathway and of cholesterol metabolism in DMD patients. Taking advantage of the mdx model for DMD, we then demonstrated that some of these perturbations are improved by treatment with the cholesterol-lowering drug, simvastatin. In the present investigation, we tested whether the combination of the restoration of dystrophin expression with simvastatin treatment could have an additive beneficial effect in the mdx model. We confirmed the positive effects of microdystrophin, and of simvastatin, when administrated separately, but detected no additive effect by their combination. Thus, the present study does not support an additive beneficial effect by combining dystrophin restoration with a metabolic normalization by simvastatin.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Dastgir, J., P. Falabella, C. Qiao, S. Kim, N. Buss, M. Fiscella, S. Pakola und O. Danos. „P.130 RGX-202: An investigational AAV8 gene therapy coding for a novel microdystrophin as a treatment for Duchenne muscular dystrophy“. Neuromuscular Disorders 32 (Oktober 2022): S101. http://dx.doi.org/10.1016/j.nmd.2022.07.246.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Dreghici, R. Donisa, S. Redican, J. Lawrence, K. Brown, F. Wang, J. Gonzalez, J. Schneider, C. Morris, P. Shieh und B. Byrne. „FP.28 IGNITE DMD phase I/II study of SGT-001 microdystrophin gene therapy for DMD: Long-term outcomes and expression update“. Neuromuscular Disorders 32 (Oktober 2022): S98. http://dx.doi.org/10.1016/j.nmd.2022.07.234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Foster, Helen, Paul S. Sharp, Takis Athanasopoulos, Capucine Trollet, Ian R. Graham, Keith Foster, Dominic J. Wells und George Dickson. „Codon and mRNA Sequence Optimization of Microdystrophin Transgenes Improves Expression and Physiological Outcome in Dystrophic mdx Mice Following AAV2/8 Gene Transfer“. Molecular Therapy 16, Nr. 11 (November 2008): 1825–32. http://dx.doi.org/10.1038/mt.2008.186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Gregorevic, Paul, Michael J. Blankinship, Elina Minami, James M. Allen, Charles E. Murry und Jeffrey S. Chamberlain. „35. Systemic Administration of rAAV6-Microdystrophin Preserves Muscle Function and Extends Lifespan in the Dystrophin-/Utrophin- Mouse Model of Severe Muscular Dystrophy“. Molecular Therapy 13 (2006): S15. http://dx.doi.org/10.1016/j.ymthe.2006.08.048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Foster, H., D. J. Wells, C. Trollet, T. Athanasopoulos, I. Graham, K. Foster und J. G. Dickson. „G.P.8.08 Codon optimisation of microdystrophin results in improvements in expression and physiological outcome in the mdx mouse following AAV8 gene transfer“. Neuromuscular Disorders 18, Nr. 9-10 (Oktober 2008): 784. http://dx.doi.org/10.1016/j.nmd.2008.06.207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Le Guiner, C., L. Servais, M. Montus, F. Bodvael, B. Gjata, J. Y. Hogrel, P. Carlier et al. „Adeno-associated virus vector (AAV) microdystrophin gene therapy prolongs survival and restores muscle function in the canine model of Duchenne muscular dystrophy (DMD)“. Neuromuscular Disorders 25 (Oktober 2015): S315. http://dx.doi.org/10.1016/j.nmd.2015.06.458.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie