Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microchannel absorber“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microchannel absorber" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Microchannel absorber"
Goel, Nitin, und D. Yogi Goswami. „Experimental Verification of a New Heat and Mass Transfer Enhancement Concept in a Microchannel Falling Film Absorber“. Journal of Heat Transfer 129, Nr. 2 (26.05.2006): 154–61. http://dx.doi.org/10.1115/1.2402182.
Der volle Inhalt der QuelleAlston, Mark E. „Optimal Microchannel Planar Reactor as a Switchable Infrared Absorber“. MRS Advances 2, Nr. 14 (2017): 783–89. http://dx.doi.org/10.1557/adv.2017.112.
Der volle Inhalt der QuelleSui, Zengguang, Wei Wu, Tian You, Zhanying Zheng und Michael Leung. „Performance investigation and enhancement of membrane-contactor microchannel absorber towards compact absorption cooling“. International Journal of Heat and Mass Transfer 169 (April 2021): 120978. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.120978.
Der volle Inhalt der QuelleKim, Yoon Jo, Yogendra K. Joshi und Andrei G. Fedorov. „Performance analysis of air-cooled microchannel absorber in absorptionbased miniature electronics cooling system“. Journal of Mechanical Science and Technology 22, Nr. 2 (Februar 2008): 338–49. http://dx.doi.org/10.1007/s12206-007-1034-5.
Der volle Inhalt der QuelleGarcía-Hernando, N., M. Venegas und M. de Vega. „Experimental performance comparison of three flat sheet membranes operating in an adiabatic microchannel absorber“. Applied Thermal Engineering 152 (April 2019): 835–43. http://dx.doi.org/10.1016/j.applthermaleng.2019.02.129.
Der volle Inhalt der QuelleSui, Zengguang, Chong Zhai und Wei Wu. „Swirling flow for performance improvement of a microchannel membrane-based absorber with discrete inclined grooves“. International Journal of Refrigeration 130 (Oktober 2021): 382–91. http://dx.doi.org/10.1016/j.ijrefrig.2021.05.039.
Der volle Inhalt der QuelleSui, Zengguang, Chong Zhai und Wei Wu. „Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration“. Renewable Energy 187 (März 2022): 109–22. http://dx.doi.org/10.1016/j.renene.2022.01.052.
Der volle Inhalt der QuelleMotamedi, Mahdi, Chia-Yang Chung, Mehdi Rafeie, Natasha Hjerrild, Fan Jiang, Haoran Qu und Robert A. Taylor. „Experimental Testing of Hydrophobic Microchannels, with and without Nanofluids, for Solar PV/T Collectors“. Energies 12, Nr. 15 (06.08.2019): 3036. http://dx.doi.org/10.3390/en12153036.
Der volle Inhalt der QuelleSui, Zengguang, Yunren Sui und Wei Wu. „Multi-objective optimization of a microchannel membrane-based absorber with inclined grooves based on CFD and machine learning“. Energy 240 (Februar 2022): 122809. http://dx.doi.org/10.1016/j.energy.2021.122809.
Der volle Inhalt der QuelleWei, Xinghua, Rijing Zhao, Siyuan Wu, Shouzhen Wang und Dong Huang. „Effect of rhombus mesh on 3D falling film flow characteristics over microchannel flat tube for LiBr (Lithium bromide) absorber“. International Journal of Heat and Mass Transfer 209 (August 2023): 124097. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124097.
Der volle Inhalt der QuelleDissertationen zum Thema "Microchannel absorber"
Cheng, Hao. „Etude d'absorption chimique du dioxyde de carbone : transfert de masse en écoulement diphasique dans un minicanal et conception d'un nouvel absorbeur multicanaux“. Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU4030.
Der volle Inhalt der QuelleMicro/minichannel devices show great interests for their potential in efficient CO2 chemical absorption in the context of the carbon capture. This PhD these aims to characterize and investigate the transport mechanisms involved in chemical reactionaccompanied two-phase mass transfer in minichannel, and to design and develop novel miniaturized CO2 absorbers featuring intensified structures and optimized absorption performances. Firstly, bubble dynamics within a T-junction straight minichannel were optically observed, showing that the chemical reaction tends to suppress bubble breakup while promoting its shrinkage. Then, the velocity field and CO2 concentration field in the liquid slug were determined using PTV and pH-sensitive colorimetry, respectively, permitting the development of a modified unit-cell mass transfer model that incorporates the effects of flow recirculation and chemical reaction. Further enhancement was achieved by embedding a spiral distributed baffle structure into the minichannel, leading to a significant increase in mass transfer coefficient with only a minor rise in pressure drop. Finally, building on this intensification measure, a novel design for an integrated multichannel CO2 absorber was proposed, featuring paralleling units of conjugated double-helix cross minichannels (Codohec). A lab-scale module of this design was realized, and its absorption performance was comprehensively evaluated, highlighting various advantages including a high mass transfer coefficient, acceptable energy consumption, high remove rate, and large CO2 treatment capacity. These findings may provide new insights into the underlying transport mechanisms of chemical reaction-accompanied gas-liquid mass transfer and contribute to the design and optimization of highly efficient miniaturized CO2 absorbers for industry applications
Ammari, Ali. „Experimental Investigation of two-phase flow in microchannels. Co-current Absorption of Ammonia in Water to Design an Innovative Bubble Plate Absorber“. Thesis, KTH, Skolan för kemivetenskap (CHE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156190.
Der volle Inhalt der QuelleAmmari, Ali. „Experimental Investigation ofTwo-phase Flow in Microchannels“Co-current Absorption of Ammonia in Water to Design an Innovative Bubble Plate Absorber” : “Co-current Absorption of Ammonia in Water to Design an Innovative Bubble Plate Absorber”“. Thesis, KTH, Tillämpad termodynamik och kylteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-116779.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Microchannel absorber"
Nagavarapu, Ananda Krishna, und Srinivas Garimella. „Falling-Film Absorption Around Microchannel Tube Banks“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63094.
Der volle Inhalt der QuelleLiu, Yunshan, und Ebrahim Al Hajri. „Mass and Heat Transfer Characteristics of a Single-High Aspect Ratio Microchannel Absorber“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89787.
Der volle Inhalt der Quellede Vega, Mercedes, Néstor García-Hernando und María Venegas. „Experimental measurement of mass transfer resistances in a membrane based adiabatic microchannel absorber“. In The 4th World Congress on Momentum, Heat and Mass Transfer. Avestia Publishing, 2019. http://dx.doi.org/10.11159/icmfht19.104.
Der volle Inhalt der QuelleJenks, Jeromy, und Vinod Narayanan. „Effect of Channel Geometry Variations on the Performance of a Microscale Bubble Absorber“. In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32445.
Der volle Inhalt der QuelleJenks, Jeromy, und Vinod Narayanan. „An Experimental Study of Ammonia-Water Bubble Absorption in a Large Aspect Ratio Microchannel“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14036.
Der volle Inhalt der QuelleChugh, Devesh, Rasool Nasr Isfahani, Kyle Gluesenkamp, Omar Abdelaziz und Saeed Moghaddam. „A Hybrid Absorption Cycle for Water Heating, Dehumidification, and Evaporative Cooling“. In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48816.
Der volle Inhalt der QuelleCardenas, Ruander, und Vinod Narayanan. „A Numerical Study of Ammonia-Water Absorption Into a Constrained Microscale Film“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67021.
Der volle Inhalt der QuelleKim, Yoon Jo, Yogendra K. Joshi und Andrei G. Fedorov. „Design of an Absorption Based Miniature Heat Pump System for Cooling of High Power Microprocessors“. In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33245.
Der volle Inhalt der QuelleNasr Isfahani, Rasool, und Saeed Moghaddam. „Absorption Characteristics of Thin Lithium Bromide (LiBr) Solution Film Constrained by a Porous Hydrophobic Membrane“. In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73158.
Der volle Inhalt der QuelleKelkar, Kanchan M., Suhas V. Patankar und Sukhvinder Kang. „Computational Method for Characterization of a Microchannel Heat Sink Involving Two-Phase Flow“. In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73119.
Der volle Inhalt der Quelle