Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microbial samples“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microbial samples" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Microbial samples"
Fierer, Noah, und Craig Cary. „Don't let microbial samples perish“. Nature 512, Nr. 7514 (August 2014): 253. http://dx.doi.org/10.1038/512253b.
Der volle Inhalt der QuelleHaas, Charles N. „Microbial Sampling: Is It Better to Sample Many Times or Use Large Samples?“ Water Science and Technology 27, Nr. 3-4 (01.02.1993): 19–25. http://dx.doi.org/10.2166/wst.1993.0314.
Der volle Inhalt der QuelleSharifullina, D. M., R. M. Vasil’eva, T. I. Yakovleva, E. G. Nikolaeva, O. K. Pozdeev, A. P. Lozhkin und R. N. Khayrullin. „Microbial landscape of atherosclerotic plaques biopsy samples“. Kazan medical journal 96, Nr. 6 (15.12.2015): 979–82. http://dx.doi.org/10.17750/kmj2015-979.
Der volle Inhalt der QuelleCiafardini, G., und B. A. Zullo. „Assay of microbial enzymes in opaque samples“. Journal of Microbiological Methods 34, Nr. 1 (September 1998): 73–79. http://dx.doi.org/10.1016/s0167-7012(98)00071-2.
Der volle Inhalt der QuelleHyvärinen, A., H. Rintala, S. Kokkonen, L. Larsson und A. Nevalainen. „Microbial Exposure Assessment With House Dust Samples“. Epidemiology 17, Suppl (November 2006): S227. http://dx.doi.org/10.1097/00001648-200611001-00582.
Der volle Inhalt der QuelleJufri, Rhezqy Furwati. „Microbial Isolation“. Journal La Lifesci 1, Nr. 1 (30.01.2020): 18–23. http://dx.doi.org/10.37899/journallalifesci.v1i1.33.
Der volle Inhalt der QuelleBerthod, Alain, Mike A. Rodriguez, Marco Girod und Daniel W. Armstrong. „Use of microbubbles in capillary electrophoresis for sample segregation when focusing microbial samples“. Journal of Separation Science 25, Nr. 15-17 (01.11.2002): 988–95. http://dx.doi.org/10.1002/1615-9314(20021101)25:15/17<988::aid-jssc988>3.0.co;2-i.
Der volle Inhalt der QuelleClarke, Erik L., Abigail P. Lauder, Casey E. Hofstaedter, Young Hwang, Ayannah S. Fitzgerald, Ize Imai, Wojciech Biernat et al. „Microbial Lineages in Sarcoidosis. A Metagenomic Analysis Tailored for Low–Microbial Content Samples“. American Journal of Respiratory and Critical Care Medicine 197, Nr. 2 (15.01.2018): 225–34. http://dx.doi.org/10.1164/rccm.201705-0891oc.
Der volle Inhalt der QuellePoretsky, Rachel S., Nasreen Bano, Alison Buchan, Gary LeCleir, Jutta Kleikemper, Maria Pickering, Whitney M. Pate, Mary Ann Moran und James T. Hollibaugh. „Analysis of Microbial Gene Transcripts in Environmental Samples†“. Applied and Environmental Microbiology 71, Nr. 7 (Juli 2005): 4121–26. http://dx.doi.org/10.1128/aem.71.7.4121-4126.2005.
Der volle Inhalt der QuelleWebster, JoAnn J., Ginger J. Hampton, John T. Wilson, William C. Ghiorse und Franklin R. Leach. „Determination of Microbial Cell Numbers in Subsurface Samples“. Ground Water 23, Nr. 1 (Januar 1985): 17–25. http://dx.doi.org/10.1111/j.1745-6584.1985.tb02775.x.
Der volle Inhalt der QuelleDissertationen zum Thema "Microbial samples"
Allevi, Richard Paul. „Quantifying Potential Sources of Microbial Contamination in Household Drinking Water Samples“. Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/42011.
Der volle Inhalt der QuelleMaster of Science
Skutas, Jorie L. „Microbial and Genomic Analysis of Environmental Samples in Search of Pathogenic Salmonella“. NSUWorks, 2017. http://nsuworks.nova.edu/occ_stuetd/461.
Der volle Inhalt der QuelleMorin, Felix. „Development and Environmental Application of Microbial Bioreporters of Oxidative Stress“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33027.
Der volle Inhalt der QuelleHsu, Kuei-Ling C. „Variability of two sampling methods in plaque samples“. Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2008m/hsu.pdf.
Der volle Inhalt der QuelleGalada, Ncebakazi. „Metagenomic analysis and characterization of microbial diversity from hydrothermal samples of El Tatio geyser field, Chile“. Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/4014.
Der volle Inhalt der QuelleThe El Tatio geyser field (ETGF) is the largest known geothermal field in Chile, forming part of a wide spectrum of extremophilic habitats in the country. The ETGF is NaCl rich, with high concentrations of toxic elements such as Li, As and Cs, which are contributed mainly by volcanic activities in the region. Most previous studies in the area have focused on the geology and geochemistry for mining purposes, as well as on the search for geothermal resources for power generation. Very little is currently known about the composition of the microbial communities of the ETGF, which makes the study reported here of particular novelty.A metagenomic approach, involving the amplification of 16S rRNA gene phylogenetic markers from metagenomic DNA was used to investigate seven different sites within the geyser field. The sample sites were characterized by high temperatures (80-85 °C) and a range of pH values (6.3-8). Various molecular methods, including clone library construction and PCR-DGGE analyses were used to target a wide range of microbial populations within the ETGF sites. Multivariate analysis was also applied to assess differences in the microbial diversity from different sites and to correlate microbial diversity with environmental conditions. Culture-dependent screening of novel nanoarchaeal species was also undertaken.These were coupled with PCR and other detection methods such as fluorescent in situ hybridization (FISH) to trace the presence of nanoarchaeal signals from enriched cultures.The results have shown that the ETGF encompasses a limited microbial diversity represented by only 30 dominant phylotypes, and most likely due to the toxic chemical content of the geyser field. The microbial representatives identified were assigned to OTUs from archaeal,nanoarchaeal and bacterial taxonomic groups. The dominant microbial taxa included members of the Proteobacteria, Firmicutes, Aquificae, Actinobacteria, Euryarchaeota(Halobacteriales, Archaeoglobales), Crenarchaeota (Thermoproteales, Desulfurococcales),together with uncultured representatives of the bacteria, archaea and nanoarchaeota. Notably,representatives of mesophilic, thermophilic and hyperthermophilic taxonomic groups were all detected in ETGF samples. This is attributed to various factors such as temperature gradients and dispersal mechanisms (e.g. natural forces such as rain and volcanic activities). Principal component analysis (PCA) showed significant differences (P < 0.05) in the microbial diversity of the ETGF samples, with principal components (based on the sequenced species from both 16S rRNA clone libraries and PCR-DGGE profiles) explaining up to 62.7% of variance. Furthermore, CCA showed that the differences in phylogenetic diversity were most influenced by temperature and salinity. This was also confirmed by the sequencing results,which showed that hyperthermophilic and haloarchaeal taxa were dominant in the ETGF sites. However, conductivity and pH were also found to contribute to variations in the microbial diversity of the experimental samples, with TDS (total dissolved solids) being a less influential factor. Attempts to generate nanoarchaeal-host co-cultures, and to recover sufficient nanoarchaeal genomic DNA for fosmid and/or large insert cloning for comparative genome analysis, were unsuccessful.This study is the first to employ metagenomic approaches to analyse the microbial diversity of sites in the ETGF, and has expanded our knowledge of microbiota present in this geyser field.
Moreno, Lilliana I. „The Effect of Sample and Sample Matrix on DNA Processing: Mechanisms for the Detection and Management of Inhibition in Forensic Samples“. FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1764.
Der volle Inhalt der QuelleHe, Jizheng, und n/a. „Molecular Biological Studies of Soil Microbial Communities Under Different Management Practices in Forest Ecosystems of Queensland“. Griffith University. Australian School of Environmental Studies, 2005. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20060309.095702.
Der volle Inhalt der QuelleRadtke, Kristin. „Microbial biodiversity in permafrost and ground ice samples and survival of High Arctic isolate Cryptococcus NP33 under simulated Martian conditions“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103609.
Der volle Inhalt der QuelleCette thèse contient deux études : 1) la biodiversité de différents types de glacesde sol de l'Arctique et du Grand Arctique, de même que la survie de Cryptococcus NP33dans des conditions martiennes simulées pendant 41 jours. La première étude impliquait des analyses dépendantes et indépendantes des conditions de culture pour évaluer les communautés microbiennes dans une congère névée enterrée, un glacier enterré, un pingo et des coins de glace. Les nombres de cellules totales et les nombres de cellules culturées dans les différents types de glaces de sol variaient (104 – 108 cellulesmL-1 nombre total; 0- 105 CFUmL-1 cellules culturées), et étaient que très faiblement dépendants de l'âge du iispécimen. Les nombres de cellules culturées étaient constamment plus élevées dans les coins de glace. Actinobacteria dominait les isolats de chaque spécimen. Un pyroséquençage bactérien d'un coin de glace a révélé une dominance (>50% desséquences) de Gammaproteobacteria. Dans une librairie de clones d'Archées du glacier enterré, les clones avaient peu de similarité à des isolats environnementaux, mais étaient similaires (>90%) à des clones environnementaux non-caractérisés d'environnements marins. Dans une librairie de clones de Bactéries du pingo, les clones étaient très similaires à des isolats et des clones provenant de cryo-environnements et d'environnements de sol. Pour la simulation martienne, Cryptococcus NP33 a été choisicomme organisme candidat suite à des expériments pour sélectionner des organismes résistant à la dessiccation, au froid et aux concentrations élevées de sel. Au cours de 41 jours dans le simulateur, Cryptococcus NP33 avait une demi-vie de 10.1 jours dans le soleil simulé et 16.1 jours dans le noir. Halorubrum avait un taux de survie de 100%(demi-vie estimée de ~70 - ∞ jours), tandis que d'autres organismes avaient une demi-vie beaucoup moins élevée (~2 - ~8 jours). Les résultats combinés suggèrent que les caractéristiques nécessaires à la survie dans des conditions martiennes simulées étaient la résistance à la dessiccation, la radiation et aux cycles de gel-dégel.
Keeley, Ryan F. „Design and Implementation of Degenerate qPCR/qRT-PCR Primers to Detect Microbial Nitrogen Metabolism in Wastewater and Wastewater-Related Samples“. Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7826.
Der volle Inhalt der QuelleZu, Theresah Nom Korbieh. „Phenotypic and Metabolic Profiling of Biological Samples in Near Real-Time Using Raman Spectroscopy“. Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/65153.
Der volle Inhalt der QuellePh. D.
Bücher zum Thema "Microbial samples"
Roche, Karen. Genotype Detection In Environmental Samples. Dublin: University College Dublin, 1998.
Den vollen Inhalt der Quelle findenVogel, J. R. Microbe concentrations, laser particle counts, and stable hydrogen and oxygen isotope ratios in samples from a riverbank filtration study, Platte River, Nebraska, 2002 to 2004. Reston, Va: U.S. Geological Survey, 2005.
Den vollen Inhalt der Quelle findenMars, Sample Handling Protocol Workshop Series (2001 San Diego Calif ). Mars sample handling protocol workshop series: Interim report of the workshop series, Workshop 3 proceedings and final report, San Diego, California, March 19-21, 2001. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2001.
Den vollen Inhalt der Quelle findenNational Research Council (U.S.). Space Studies Board, National Research Council (U.S.). Division on Engineering and Physical Sciences und National Academies Press (U.S.), Hrsg. Assessment of planetary protection requirements for Mars sample return missions. Washington, D.C: National Academies Press, 2009.
Den vollen Inhalt der Quelle findenMars sample handling protocol workshop series: Interim report of the workshop series Workshop 1 proceedings and final report, Bethesda, Maryland, March 20-22, 2000. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2000.
Den vollen Inhalt der Quelle findenMars sample handling protocol workshop series: Interim report of the workshop series Workshop 1 proceedings and final report, Bethesda, Maryland, March 20-22, 2000. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2000.
Den vollen Inhalt der Quelle findenMars sample handling protocol workshop series: Interim report of the workshop series, Workshop 3 proceedings and final report, San Diego, California, March 19-21, 2001. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2001.
Den vollen Inhalt der Quelle findenS, Race Margaret, Rummel J. D und Ames Research Center, Hrsg. Mars sample handling protocol workshop series: Interim report of the workshop series Workshop 1 proceedings and final report, Bethesda, Maryland, March 20-22, 2000. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2000.
Den vollen Inhalt der Quelle findenTaberlet, Pierre, Aurélie Bonin, Lucie Zinger und Eric Coissac. Some early landmark studies. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198767220.003.0011.
Der volle Inhalt der QuelleL, Lewis David, und United States. Environmental Protection Agency., Hrsg. Treating soil solution samplers to prevent microbial removal of analytes. [Washington, D.C.?: U.S. Environmental Protection Agency, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Microbial samples"
Jansson, Janet K., und Thomas Leser. „Quantitative PCR of environmental samples“. In Molecular Microbial Ecology Manual, 43–61. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0215-2_5.
Der volle Inhalt der QuelleInsam, Heribert. „A New Set of Substrates Proposed for Community Characterization in Environmental Samples“. In Microbial Communities, 259–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60694-6_25.
Der volle Inhalt der Quellevan Verseveld, Henk W., Wilfred F. M. Röling, Diman van Rossum, Anniet M. Laverman, Stef van Dijck, Martin Braster und Fred C. Boogerd. „Phenetic and Genetic Analyses of Bacterial Populations in Fermented Food and Environmental Samples“. In Microbial Communities, 19–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60694-6_3.
Der volle Inhalt der QuelleDelaney, Sarah, Richard Murphy und Fiona Walsh. „Transposon-Aided Capture of Antibiotic Resistance Plasmids from Complex Samples“. In Microbial Transposon Mutagenesis, 151–57. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9570-7_14.
Der volle Inhalt der QuelleJansson, Janet K., und Thomas Leser. „Section 2 update: Quantitative PCR of environmental samples“. In Molecular Microbial Ecology Manual, 2347–65. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-2177-0_213.
Der volle Inhalt der QuelleAkaihe, Chidinma Lynda, Ebubechukwu Nnamdi Dim, Chizoba I. Ezugwu, Emeka Innocent Nweze und Paul Ekene Chidebelu. „Analytical Techniques/Technologies for Studying Ecological Microbial Samples“. In Environmental and Microbial Biotechnology, 481–517. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8999-7_18.
Der volle Inhalt der QuelleMcHardy, Alice Carolyn, und Kaustubh Patil. „Phylogenetic Binning of Metagenome Sequence Samples“. In Handbook of Molecular Microbial Ecology I, 353–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010518.ch40.
Der volle Inhalt der QuelleRimbara, Emiko, Masanori Sasatsu und David Y. Graham. „PCR Detection of Helicobacter pylori in Clinical Samples“. In PCR Detection of Microbial Pathogens, 279–87. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-60327-353-4_19.
Der volle Inhalt der QuelleAnsari, A. Thaminum. „Biosorption and Discolorization of Textile Dye Effluent Using Fungi Isolated From Soil Samples Collected Near Textile Dye Industry“. In Microbial Biofilms, 271–94. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367415075-17.
Der volle Inhalt der QuelleLavender, Caroline J., und Janet A. M. Fyfe. „Direct Detection of Mycobacterium ulcerans in Clinical Specimens and Environmental Samples“. In PCR Detection of Microbial Pathogens, 201–16. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-60327-353-4_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Microbial samples"
Sulaiman, I., B. Wu, J. C. Tsay, Y. Li, M. Sauthoff, A. S. Scott, K. Gershner et al. „Functional Microbiomic Approaches Using Lower Airway Samples Identify a Subset of Lung Microbial Communities with Evidence of Active Microbial Metabolism“. In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a4246.
Der volle Inhalt der QuelleXu, Zhaohui, Pooja Yadav, Zhizhou Zhang, Sankardas Roy und Huimin Zhang. „Quantification of microbial species in solid state fermentation samples using signature genomic sequences“. In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8217781.
Der volle Inhalt der QuelleChebotar, V. K., A. N. Zaplatkin, O. V. Komarova, M. E. Baganova, N. I. Polukhin und S. V. Balakina. „Microbial preparations on the basis of endophytic bacteria for nutrition and protection of potatoes from diseases“. In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.051.
Der volle Inhalt der QuelleGarcia, Alfonso, Trevor Place, Michael Holm, Jennifer Sargent und Andrew Oliver. „Pipeline Sludge Sampling for Assessing Internal Corrosion Threat“. In 2014 10th International Pipeline Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/ipc2014-33113.
Der volle Inhalt der QuelleJadhav, P., S. Ashokkumar und N. Nagwekar. „Microbial load reduction using modified Solar Conduction Dryer with composite filters“. In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7728.
Der volle Inhalt der QuelleZhang, Chao, Prashant Vijay Thakkar, Felice Schnoll-Sussman, Bridget McClure, Michelle Bigg, Greg Sonnenberg, Doron Betel und Manish Shah. „Abstract A04: Microbial and immunologic characterization of gastroesophageal tissue biopsy samples: A multiparametric analysis“. In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-a04.
Der volle Inhalt der QuelleBangham, Madeleine, und Katherine Myall. „Investigating microbial communities in interstitial lung disease by standard culture of bronchioalveolar lavage samples“. In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa2960.
Der volle Inhalt der QuelleRahman, Jessica S., Jinyan Li, Juanying Xie, Shoshana Fogelman und Michael Blumenstein. „Connectivity Based Method for Clustering Microbial Communities from Metagenomics Data of Water and Soil Samples“. In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018. http://dx.doi.org/10.1109/ijcnn.2018.8489220.
Der volle Inhalt der QuelleLu, Jia, Xiaohou Shao, Chao Yin, Xinyu Mao, Long Wang, Yong Min und Muchen Shu. „Preliminary study on removal of nitrate nitrogen in aqueous samples by microbial nano-silica ball“. In International conference on Human Health and Medical Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/hhme131442.
Der volle Inhalt der QuelleKublanovskaya, A. A., P. A. Zaytsev, K. A. Chekanov, T. A. Fedorenko, S. G. Vasilieva, A. E. Solovchenko und E. S. Lobakova. „Comparative analysis of microbial communities from phosphorus-polluted sites from Northern (Russia) and Southern (Israel) latitudes“. In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.136.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Microbial samples"
Swanson, Juliet S. Microbial Characterization of Halite and Groundwater Samples from the WIPP. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089877.
Der volle Inhalt der QuelleBerry, C. J., C. B. Fliermans und J. Santo Domingo. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities. Office of Scientific and Technical Information (OSTI), Oktober 1997. http://dx.doi.org/10.2172/630875.
Der volle Inhalt der QuelleSwanson, Juliet S., Donald T. Reed, David A. Ams, Diana Norden und Karen A. Simmons. Status Report on the Microbial Characterization of Halite and Groundwater Samples from the WIPP. Office of Scientific and Technical Information (OSTI), Juli 2012. http://dx.doi.org/10.2172/1045985.
Der volle Inhalt der QuelleLaurinavichius, K. S. Experimental Investigation of Microbially Induced Corrosion of Test Samples and Effect of Self-Assembled Hydrophobic Monolayers. Exposure of Test Samples to Continuous Microbial Cultures, Chemical Analysis, and Biochemical Studies. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/758748.
Der volle Inhalt der QuelleThurston, Alison, Zoe Courville, Lauren Farnsworth, Ross Lieblappen, Shelby Rosten, John Fegyveresi, Stacy Doherty, Robert Jones und Robyn Barbato. Microscale dynamics between dust and microorganisms in alpine snowpack. Engineer Research and Development Center (U.S.), März 2021. http://dx.doi.org/10.21079/11681/40079.
Der volle Inhalt der Quelle