Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microbial modulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microbial modulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Microbial modulation"
Ash, Caroline. „Microbial modulation of diabetes“. Science 359, Nr. 6380 (08.03.2018): 1114.3–1114. http://dx.doi.org/10.1126/science.359.6380.1114-c.
Der volle Inhalt der QuelleBrown, J. Mark, und Stanley L. Hazen. „Microbial modulation of cardiovascular disease“. Nature Reviews Microbiology 16, Nr. 3 (08.01.2018): 171–81. http://dx.doi.org/10.1038/nrmicro.2017.149.
Der volle Inhalt der QuelleKhan, Muhammad Tanweer, Max Nieuwdorp und Fredrik Bäckhed. „Microbial Modulation of Insulin Sensitivity“. Cell Metabolism 20, Nr. 5 (November 2014): 753–60. http://dx.doi.org/10.1016/j.cmet.2014.07.006.
Der volle Inhalt der QuelleGoel, Ajay Kumar, N. Dilbaghi, Dev Vrat Kamboj und Lokendra Singh. „Probiotics: Microbial Therapy for Health Modulation“. Defence Science Journal 56, Nr. 4 (01.07.2006): 513–29. http://dx.doi.org/10.14429/dsj.56.1917.
Der volle Inhalt der QuelleSparvoli, Luiz G., Ramon V. Cortez, Silvia Daher, Marina Padilha, Sue Y. Sun, Mary U. Nakamura und Carla R. Taddei. „Women's multisite microbial modulation during pregnancy“. Microbial Pathogenesis 147 (Oktober 2020): 104230. http://dx.doi.org/10.1016/j.micpath.2020.104230.
Der volle Inhalt der QuelleSkye, Sarah M., und Stanley L. Hazen. „Microbial Modulation of a Uremic Toxin“. Cell Host & Microbe 20, Nr. 6 (Dezember 2016): 691–92. http://dx.doi.org/10.1016/j.chom.2016.11.005.
Der volle Inhalt der QuelleChilimoniuk, Zuzanna, Dominik Dudziński, Aleksandra Borkowska, Aleksandra Chałupnik, Piotr Więsyk, Beata Chilimoniuk, Łukasz Gawłowicz, Filip Grzegorzak und Katarzyna Stasiak. „Correlation between gut microbiota dysbiosis and colorectal cancer: review“. Quality in Sport 22 (18.09.2024): 54326. http://dx.doi.org/10.12775/qs.2024.22.54326.
Der volle Inhalt der QuelleVamanu, Emanuel. „Complementary Functional Strategy for Modulation of Human Gut Microbiota“. Current Pharmaceutical Design 24, Nr. 35 (24.01.2019): 4144–49. http://dx.doi.org/10.2174/1381612824666181001154242.
Der volle Inhalt der QuelleCayuela, Miguel Freitas, Chantal. „Microbial Modulation of Host Intestinal Glycosylation Patterns“. Microbial Ecology in Health and Disease 12, Nr. 2 (Januar 2000): 165–78. http://dx.doi.org/10.1080/089106000750060422.
Der volle Inhalt der QuelleSpisni, Enzo, Giovannamaria Petrocelli, Veronica Imbesi, Renato Spigarelli, Demetrio Azzinnari, Marco Donati Sarti, Massimo Campieri und Maria Chiara Valerii. „Antioxidant, Anti-Inflammatory, and Microbial-Modulating Activities of Essential Oils: Implications in Colonic Pathophysiology“. International Journal of Molecular Sciences 21, Nr. 11 (10.06.2020): 4152. http://dx.doi.org/10.3390/ijms21114152.
Der volle Inhalt der QuelleDissertationen zum Thema "Microbial modulation"
Johansson, Ulrika. „Modulation of human dendritic cell function by microbial or autologous stimuli“. Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270951.
Der volle Inhalt der QuelleSasaki, Yusuke. „Synthetic Constitution and Modulation of Microbial Metabolic Systems for Advanced BioChemical Generation“. Kyoto University, 2020. http://hdl.handle.net/2433/253449.
Der volle Inhalt der QuelleKyoto University (京都大学)
0048
新制・課程博士
博士(総合学術)
甲第22613号
総総博第13号
新制||総総||2(附属図書館)
京都大学大学院総合生存学館総合生存学専攻
(主査)教授 山口 栄一, 教授 山敷 庸亮, 教授 植田 充美, 大嶌 幸一郎
学位規則第4条第1項該当
Smit, Flora [Verfasser]. „Cutaneous defense against Candida albicans: modulation of chemokine-driven anti-microbial immune responses / Flora Smit“. Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2018. http://d-nb.info/1172500274/34.
Der volle Inhalt der QuelleTran, Thi Thu Hong. „Dietary modulation to improve pig health and performance /“. Uppsala : Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 2008. http://epsilon.slu.se/200891.pdf.
Der volle Inhalt der QuelleGanesan, Asha Purnima Veerappan. „A study of regulatory T cells and modulation of allergic immune responses by microbial agents in human asthma“. Thesis, University of Southampton, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538955.
Der volle Inhalt der QuelleMaître, Apolline. „Modulating the vector microbiota for the control of vector-borne pathogens“. Electronic Thesis or Diss., Maisons-Alfort, École nationale vétérinaire d'Alfort, 2024. http://www.theses.fr/2024ENVA0005.
Der volle Inhalt der QuelleThe Corsican livestock population, composed of sheep, goats, pigs and cattle, is mainly raised in extensive farming systems. Frequent interactions between livestock, wildlife and human populations can favor the circulation of ticks and tick-borne microorganisms. A high prevalence of tick-borne bacteria of the families Rickettsiaceae and Anaplasmataceae has been reported in goats (Anaplasma ovis), sheep (A. ovis), cattle (Anaplasma marginale, Anaplasma phagocytophilum, and Ehrlichia minasensis) and ticks (Rickettsia spp.) in Corsica. Some of these bacteria (e.g., A. phagocytophilum and Rickettsia sp.) are zoonotic and pathogenic to humans. Currently, there are no preventive measures for the control of ticks and tick-borne diseases. The tick microbiome is a very complex set of interacting microorganisms that impact tick physiology and vector competence. Recently, we have shown that tick microbiota vaccines can produce high mortality in ticks during feeding. Anti-microbiota vaccines can also modulate the tick microbiome and thus can be used as a tool to control the transmission of tick-borne pathogens. In this project, we will use next-generation sequencing of 16S amplicons to study the taxonomic and functional diversity of the microbiome of Rhipicephalus bursa and Hyalomma marginatum, the main pathogen-vector ticks in cattle in Corsica. Using co-occurrence networks and high-throughput pathogen detection, we will then identify keystone bacteria interacting with the detected tick-borne pathogens. The keystone bacteria will be used to formulate antimicrobial vaccines to block pathogen acquisition and/or transmission
Smida, Hassiba. „Modulation de l'interface entre biofilms microbiens électroactifs et surface d'électrode : modifications de surface et effets de milieux“. Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S135/document.
Der volle Inhalt der QuelleMicrobial Fuel Cells (MFCs) are bio-electrochemical devices based on electroactive bacterial biofilms which catalyze the electron transfer both at the anode and cathode to generate electrical power. To enhance the biofilms development and to improve the biofilm-electrode connection, being both key features in the performance of the MFC, the graphite anode was functionalized by pyridine units. In order to ensure a robust interface, pyridine units are grafted covalently through the electrochemical reduction of diazopyridinium cations in situ formed from aminopyridine precursors, following the well-known electrografting method for aryl diazonium salts. By comparing the reactivity of various aminopyridine derivatives and the resulting grafted layers properties, the para-diazopyridinium cations reduction results in a thin and compact layer, which is the best suited for promoting bacterial adhesion and favorable electron transfer between the anode surface and electroactive bacteria. The presence of pyridine units immobilized on the anode surface leads to a faster biofilm development together with increased MFC performances for young biofilms. In contrast, anode modified with polyphenylene multilayers and then colonized by a bacterial biofilm has been proved to be less effective for the catalysis of acetate oxidation. On the other hand, the nature of the electrolyte and the physicochemical properties are also important parameters for the bacterial biofilm development. Room temperature ionic liquids have unique properties, particularly in terms of solvation, and their use in biotechnological applications has recently emerged. However, their effects on bacterial biofilms remain little known. The addition of a selection of hydrophilic and hydrophobic ionic liquids based on imidazolium or pyridinium cations in the anolyte, even in very small quantities, or immobilized at the anode surface inhibited the biofilm development
Banasaz, Mahnaz. „Intestinal cell kinetics : modulation caused by age, gender and microbial status in rats and mice : an experimental study in germfree, conventional and Lactobacillus rhamnosus GG or Clostridium difficile, mono-associated animals /“. Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-241-8.
Der volle Inhalt der QuellePham, Hoang-Nam. „Impact des métabolites secondaires de plantes sur des bactéries pathogènes de la rhizosphère : existe-t-il un lien entre la résistance sur métaux et la modulation de résistance aux antibiotiques ?“ Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30153/document.
Der volle Inhalt der QuelleThe objective of this thesis is to evaluate the modification of plant secondary metabolism production contaminated with metallic trace elements (MTE) and its consequences on the associated rhizospheric bacterial communities including bacteria presenting MultiDrug Resistant (MDR) phenotypes. We have focused on two contexts of metals exposure: the phytoremediation of mining sites in Vietnam and the reconversion of agricultural soils contaminated by the atmospheric re-deposition of metallurgical activities in France. Our results highlighted that contamination by different types of metals (mainly Cu and Pb) has led to an alteration in the production of secondary metabolites in the roots, stems and leaves of the hyper-accumulating Pteris vittata and for roots, a similar trend in the metabolic changes could be observed in another type of pollution context (Zn and Pb more particularly). Similarly, the metabolic profiles of the underground parts (roots and rhizomes) of Miscanthus x giganteus were modified by the concentrations of Pb, Cd and Zn in agricultural soils. For the two plants examined chlorogenic acid derivatives have been found in increased proportions in the roots despite soil type and pollution context were highly contrasted. However, catechic tannin derivatives are specifically found in higher proportions in the roots of P. vittata under metal pressure. These polyphenols are known for their ability to scavenge free radicals and their antioxidant properties and thus could be involved in the adaptation of these plants to metallic stress by helping to limit the oxidative stress generated by MTE. At the level of the aerial parts, we studied only the change for P. vittata and evidenced higher proportions of flavonoid derivatives for contaminated plants. Our metagenomic results allow us to conclude also on the effect of MTE on the diversity and the specific richness of the bacterial communities of the studied soils: a high contamination of Cu (10 times the allowed limit) decreased dramatically bacterial richness and diversity, while for more moderate MTE levels including Cu Pb and Zn, the diversity of rhizosphere bacterial communities was more explained by plant or season effect rather than an effect of MTE. This effect on P.vittata rhizosphere bacterial composition is reflected by an enrichment in genera known as opportunistic human pathogens, including Ralstonia, Acinetobacter, Burkholderia and Mycobacterium. In addition, Cupriavidus, known as a highly resistant genus, is the only P. vittata specifically associated genus found in increased proportions at both mining sites compared to non-contaminated rhizosphere soils. This genus could then be involved in the adaptation process of this plant with metal stress. As for the rhizospheric communities of Miscanthus x giganteus, the selection of Stenotrophomonas and Pseudomonas in agricultural soils contaminated with MTE was observed. As a part of this thesis, we have also developed a rapid method for testing the impact of plant metabolites on pathogenic strains of clinical and environmental origin and their efflux pump inhibition (EPI) activity of RND family. Our data thus showed interesting and notable EPI activities comparable to that of the efflux pump inhibitor PAßN for tested compounds issued from Fallopia x bohemica roots or for their derivatives
Roussel, Perrine. „Entre glande mammaire et Escherichia coli : étude des intéractions qui conditionnent le déclenchement et l'issue des mammites : rôles des cellules épithéliales et modulation par l'IL-17A“. Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4046.
Der volle Inhalt der QuelleAlong with agricultural intensification of animal production, some pathologies have emerge, especially mastitis. This disease corresponds to an inflammation of the udder, and is generally provoked by bacterial infection. Mastitis on their own constitute the main source of financial impairments within dairy herds in France and worldwide. So far, there is no treatment able to prevent mastitis over time. Among major mastitis pathogens Escherichia coli (E. coli) is of great importance, because of its prevalence and its impacts on milk yield and quality. The mastitis severity has proven to be linked to host factors, but the implication of bacterial characteristics remains unknown. Thus, this study aimed at deciphering whether interactions between E. coli and the mammary gland, especially the mammary epithelial cells (MECs) and neutrophils, may explain a variability in mastitis severity. Influence of milk on these interactions was also investigated
Bücher zum Thema "Microbial modulation"
L, Alberghina, Frontali Laura, Hamer G und European Federation of Biotechnology. Working Party on Microbial Physiology., Hrsg. Physiological and genetic modulation of product formation: Microbial physiology for biotechnological innovation : proceedings of an international symposium, Como/I, 8-10 May 1986. Weinheim (Federal Republic of Germany): VCH, 1987.
Den vollen Inhalt der Quelle findenHe, Yongqun, und Amal O. Amer, Hrsg. Microbial Modulation of Host Apoptosis and Pyroptosis. Frontiers Media SA, 2014. http://dx.doi.org/10.3389/978-2-88919-280-9.
Der volle Inhalt der QuelleRahal, Elias Adel, Margret Shirinian und Daniele Dessì, Hrsg. The Microbial Modulation of Autoimmune Processes and Proinflammatory Pathways. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88976-932-2.
Der volle Inhalt der QuelleAlberghina, L. Physiological and Genetic Modulation of Product Formation (Dechema Monographs,). Wiley-VCH Verlag GmbH, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Microbial modulation"
Bearson, Bradley L., und Scot E. Dowd. „Molecular Profiling: Catecholamine Modulation of Gene Expression in Enteropathogenic Bacteria“. In Microbial Endocrinology, 229–41. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5576-0_13.
Der volle Inhalt der QuelleStover, Cordula M. „Mechanisms of Stress-Mediated Modulation of Upper and Lower Respiratory Tract Infections“. In Microbial Endocrinology, 181–89. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5576-0_10.
Der volle Inhalt der QuelleHuges, R., und I. Rowland. „Nutritional and Microbial Modulation of Carcinogenesis“. In Gut Flora, Nutrition, Immunity and Health, 208–36. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470774595.ch10.
Der volle Inhalt der QuelleStevens, Mark P. „Modulation of the Interaction of Enteric Bacteria with Intestinal Mucosa by Stress-Related Catecholamines“. In Microbial Endocrinology, 111–34. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5576-0_6.
Der volle Inhalt der QuelleAli, Saira, und Asma Imran. „Plant Disease Management Through Microbiome Modulation“. In Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management, 113–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87512-1_5.
Der volle Inhalt der QuelleWeisskopf, L., und A. Bailly. „Plant Growth Modulation by Bacterial Volatiles-A Focus onBurkholderiaSpecies“. In Molecular Microbial Ecology of the Rhizosphere, 665–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118297674.ch63.
Der volle Inhalt der QuelleTurrini, Federica, Raffaella Boggia, Paola Zunin und Francesco Michelangelo Turrini. „Modulation of the Host-Parasite Redox Metabolism to Potentiate Antimalarial Drug Efficiency“. In Oxidative Stress in Microbial Diseases, 511–29. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8763-0_27.
Der volle Inhalt der QuelleTashiro, Fumio, Shigeru Morimura, Nobuo Horikoshi, Kazuko Kato und Yoshio Ueno. „Deregulation of c-myc Gene and Modulation of Glucocorticoid Receptor by Aflatoxin B1“. In Microbial Toxins in Foods and Feeds, 483–88. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0663-4_44.
Der volle Inhalt der QuelleMitra, Aditee, und Kevin J. Flynn. „Exploring the Implications of the Stoichiometric Modulation of Planktonic Predation“. In Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective, 77–89. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30259-1_7.
Der volle Inhalt der QuelleAnsari, Waquar Akhter, Ram Krishna, Mohammad Tarique Zeyad, Shailendra Singh und Akhilesh Yadav. „Endophytic Actinomycetes-Mediated Modulation of Defense and Systemic Resistance Confers Host Plant Fitness Under Biotic Stress Conditions“. In Microbial Versatility in Varied Environments, 167–80. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3028-9_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Microbial modulation"
Lee, Se Hee, Yoon Ok Jang, Jong Jin Choi, Yeon-Mok Oh und Sei Won Lee. „Gut microbial modulation attenuates emphysema development by suppressing inflammation and apoptosis“. In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.312.
Der volle Inhalt der QuelleMcPherson, Alex C., Catherine Phelps, Mackenzie Bender, Colin Laughlin und Marlies Meisel. „1326 Modulation of the gut microbiota drives microbial translocation to the tumor microenvironment in melanoma“. In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.1326.
Der volle Inhalt der QuelleS, Zarin A., Arup Lal Chakraborty und Saumyakanti Khatua. „Correlating microbial bioluminescence to the different phases of growth using a 2004 nm VCSEL-based 2f wavelength modulation spectroscopy“. In 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542159.
Der volle Inhalt der QuelleRadu, Elena, F. Marinescu, I. Savin, M. Popa, G. Pircalabioru, Mihai Badic und C. Chifiriuc. „MODULATION OF THE ANTIBIOTIC SUSCEPTIBILITY PROFILES OF SOME MICROBIAL STRAINS ISOLATED FROM WASTEWATER UNDER THE INFLUENCE OF THE ELECTROMAGNETIC FIELD“. In International Symposium "The Environment and the Industry". National Research and Development Institute for Industrial Ecology, 2016. http://dx.doi.org/10.21698/simi.2016.0043.
Der volle Inhalt der QuelleKumrungsee, Thanutchaporn, Norihisa Kato, Toshiro Matsui und Yongshou Yang. „Plant and gut microbiota-derived protein metabolites and potential health functions“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/envt3719.
Der volle Inhalt der QuelleHafiz, Md Abdullah Al, Sherif Tella, Nouha Alcheikh, Hossein Fariborzi und Mohammad I. Younis. „Axially Modulated Clamped-Guided Arch Resonator for Memory and Logic Applications“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68284.
Der volle Inhalt der QuelleBari, Shahla, Alicia Darwin, Humaira Sarfraz, Lucas Li, Daniel George, Kedar Kirtane, Krupal Patel, Jose R. Conejo-Garcia, Mostafa Eysha und Jameel Muzaffar. „1254 Microbial metabolome as a predictor and modulator of durable response to immune checkpoint therapy in solid cancers“. In SITC 39th Annual Meeting (SITC 2024) Abstracts, A1403. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/jitc-2024-sitc2024.1254.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Microbial modulation"
Zchori-Fein, Einat, Judith K. Brown und Nurit Katzir. Biocomplexity and Selective modulation of whitefly symbiotic composition. United States Department of Agriculture, Juni 2006. http://dx.doi.org/10.32747/2006.7591733.bard.
Der volle Inhalt der QuelleWeinberg, Zwi G., Adegbola Adesogan, Itzhak Mizrahi, Shlomo Sela, Kwnag Jeong und Diwakar Vyas. effect of selected lactic acid bacteria on the microbial composition and on the survival of pathogens in the rumen in context with their probiotic effects on ruminants. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598162.bard.
Der volle Inhalt der Quelle