Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Microbial metabolism.

Zeitschriftenartikel zum Thema „Microbial metabolism“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Microbial metabolism" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

VINOPAL, R. T. „Microbial Metabolism“. Science 239, Nr. 4839 (29.01.1988): 513.2–514. http://dx.doi.org/10.1126/science.239.4839.513.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Downs, Diana M. „Understanding Microbial Metabolism“. Annual Review of Microbiology 60, Nr. 1 (Oktober 2006): 533–59. http://dx.doi.org/10.1146/annurev.micro.60.080805.142308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

ARNAUD, CELIA. „VIEWING MICROBIAL METABOLISM“. Chemical & Engineering News 85, Nr. 38 (17.09.2007): 11. http://dx.doi.org/10.1021/cen-v085n038.p011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wackett, Lawrence P. „Microbial metabolism prediction“. Environmental Microbiology Reports 2, Nr. 1 (08.02.2010): 217–18. http://dx.doi.org/10.1111/j.1758-2229.2010.00144.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hahn-Hägerdal, Bärbel, und Neville Pamment. „Microbial Pentose Metabolism“. Applied Biochemistry and Biotechnology 116, Nr. 1-3 (2004): 1207–10. http://dx.doi.org/10.1385/abab:116:1-3:1207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wackett, Lawrence P. „Microbial community metabolism“. Environmental Microbiology Reports 5, Nr. 2 (05.03.2013): 333–34. http://dx.doi.org/10.1111/1758-2229.12041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wackett, Lawrence P. „Microbial community metabolism“. Environmental Microbiology Reports 15, Nr. 3 (05.05.2023): 240–41. http://dx.doi.org/10.1111/1758-2229.13161.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rajini, K. S., P. Aparna, Ch Sasikala und Ch V. Ramana. „Microbial metabolism of pyrazines“. Critical Reviews in Microbiology 37, Nr. 2 (11.04.2011): 99–112. http://dx.doi.org/10.3109/1040841x.2010.512267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chubukov, Victor, Luca Gerosa, Karl Kochanowski und Uwe Sauer. „Coordination of microbial metabolism“. Nature Reviews Microbiology 12, Nr. 5 (24.03.2014): 327–40. http://dx.doi.org/10.1038/nrmicro3238.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ash, Caroline. „Microbial entrainment of metabolism“. Science 365, Nr. 6460 (26.09.2019): 1414.10–1416. http://dx.doi.org/10.1126/science.365.6460.1414-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Nakamura, T. „Microbial Manipulation of Metabolism“. Science Translational Medicine 4, Nr. 148 (22.08.2012): 148ec153. http://dx.doi.org/10.1126/scitranslmed.3004777.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Orabi, K. „Microbial metabolism of artemisitene“. Phytochemistry 51, Nr. 2 (Mai 1999): 257–61. http://dx.doi.org/10.1016/s0031-9422(98)00770-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Rao, AS. „Terminology in microbial metabolism“. Biochemical Education 24, Nr. 1 (Januar 1996): 61–62. http://dx.doi.org/10.1016/s0307-4412(96)80011-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Howland, John L. „Microbial physiology and metabolism“. Biochemical Education 23, Nr. 2 (April 1995): 106. http://dx.doi.org/10.1016/0307-4412(95)90661-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Cerniglia, Carl E., Daniel W. Kelly, James P. Freeman und Dwight W. Miller. „Microbial metabolism of pyrene“. Chemico-Biological Interactions 57, Nr. 2 (Februar 1986): 203–16. http://dx.doi.org/10.1016/0009-2797(86)90038-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Sonnleitner, B. „Quantitation of microbial metabolism“. Antonie van Leeuwenhoek 60, Nr. 3-4 (1991): 133–43. http://dx.doi.org/10.1007/bf00430361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Stoker, C. R., P. J. Boston, R. L. Mancinelli, W. Segal, B. N. Khare und C. Sagan. „Microbial metabolism of tholin“. Icarus 85, Nr. 1 (Mai 1990): 241–56. http://dx.doi.org/10.1016/0019-1035(90)90114-o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Alfred, Jane. „Microbial genomes to metabolism“. Nature Reviews Genetics 3, Nr. 10 (Oktober 2002): 733. http://dx.doi.org/10.1038/nrg922.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Dong, Mei, Xizhi Feng, Ben-Xiang Wang, Takashi Ikejima und Li-Jun Wu. „Microbial Metabolism of Pseudoprotodioscin“. Planta Medica 70, Nr. 7 (Juli 2004): 637–41. http://dx.doi.org/10.1055/s-2004-827187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Mikell, Julie Rakel, Wimal Herath und Ikhlas Ahmad Khan. „Microbial Metabolism. Part 12.“ Chemical and Pharmaceutical Bulletin 59, Nr. 6 (2011): 692–97. http://dx.doi.org/10.1248/cpb.59.692.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Heider, Johann, und Georg Fuchs. „Microbial Anaerobic Aromatic Metabolism“. Anaerobe 3, Nr. 1 (Februar 1997): 1–22. http://dx.doi.org/10.1006/anae.1997.0073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

McChesney, J., und S. Kouzi. „Microbial Models of Mammalian Metabolism: Sclareol Metabolism“. Planta Medica 56, Nr. 06 (Dezember 1990): 693. http://dx.doi.org/10.1055/s-2006-961374.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Raab, Andrea, und Jörg Feldmann. „Microbial Transformation of Metals and Metalloids“. Science Progress 86, Nr. 3 (August 2003): 179–202. http://dx.doi.org/10.3184/003685003783238671.

Der volle Inhalt der Quelle
Annotation:
Throughout evolution, microbes have developed the ability to live in nearly every environmental condition on earth. They can grow with or without oxygen or light. Microbes can dissolve or precipitate ores and are able to yield energy from the reduction/oxidation of metal ions. Their metabolism depends on the availability of metal ions in essential amounts and protects itself from toxic amounts of metals by detoxification processes. Metals are metabolised to metallorgano-compounds, bound to proteins or used as catalytic centres of enzymes in biological reactions. Microbes, as every other cell, have developed a whole range of mechanisms for the uptake and excretion of metals and their metabolised compounds. The diversity of microbial metabolism can be illustrated by the fact that certain microbes can be found living on arsenate, which is considered a highly toxic metal for most other forms of live.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Fouillaud, Mireille, und Laurent Dufossé. „Microbial Secondary Metabolism and Biotechnology“. Microorganisms 10, Nr. 1 (07.01.2022): 123. http://dx.doi.org/10.3390/microorganisms10010123.

Der volle Inhalt der Quelle
Annotation:
In recent decades scientific research has demonstrated that the microbial world is infinitely richer and more surprising than we could have imagined. Every day, new molecules produced by microorganisms are discovered, and their incredible diversity has not yet delivered all of its messages. The current challenge of research is to select from the wide variety of characterized microorganisms and compounds, those which could provide rapid answers to crucial questions about human or animal health or more generally relating to society’s demands for medicine, pharmacology, nutrition or everyday well-being.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Wintermute, Edwin H., und Pamela A. Silver. „Emergent cooperation in microbial metabolism“. Molecular Systems Biology 6, Nr. 1 (Januar 2010): 407. http://dx.doi.org/10.1038/msb.2010.66.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Crunkhorn, Sarah. „Microbial metabolite predicts human metabolism“. Nature Reviews Drug Discovery 8, Nr. 10 (Oktober 2009): 772–73. http://dx.doi.org/10.1038/nrd3008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Schuetz, R., N. Zamboni, M. Zampieri, M. Heinemann und U. Sauer. „Multidimensional Optimality of Microbial Metabolism“. Science 336, Nr. 6081 (03.05.2012): 601–4. http://dx.doi.org/10.1126/science.1216882.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

VanHook, Annalisa M. „Microbial metabolites shape lipid metabolism“. Science Signaling 13, Nr. 627 (14.04.2020): eabc1552. http://dx.doi.org/10.1126/scisignal.abc1552.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ensign, Scott A. „Microbial Metabolism of Aliphatic Alkenes†“. Biochemistry 40, Nr. 20 (Mai 2001): 5845–53. http://dx.doi.org/10.1021/bi015523d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Kochanowski, Karl, Uwe Sauer und Elad Noor. „Posttranslational regulation of microbial metabolism“. Current Opinion in Microbiology 27 (Oktober 2015): 10–17. http://dx.doi.org/10.1016/j.mib.2015.05.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Heinemann, Matthias, und Uwe Sauer. „Systems biology of microbial metabolism“. Current Opinion in Microbiology 13, Nr. 3 (Juni 2010): 337–43. http://dx.doi.org/10.1016/j.mib.2010.02.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kelly, D. P., und J. C. Murrell. „Microbial metabolism of methanesulfonic acid“. Archives of Microbiology 172, Nr. 6 (15.11.1999): 341–48. http://dx.doi.org/10.1007/s002030050770.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Codd, G. A. „Environmental regulation of microbial metabolism“. Endeavour 10, Nr. 1 (Januar 1986): 52. http://dx.doi.org/10.1016/0160-9327(86)90063-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

McArthur, George H., und Stephen S. Fong. „Toward Engineering Synthetic Microbial Metabolism“. Journal of Biomedicine and Biotechnology 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/459760.

Der volle Inhalt der Quelle
Annotation:
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements inde novoDNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Zhan, Ji-Xun, Yuan-Xing Zhang, Hong-Zhu Guo, Jian Han, Li-Li Ning und De-An Guo. „Microbial Metabolism of Artemisinin byMucorpolymorphosporusandAspergillusniger“. Journal of Natural Products 65, Nr. 11 (November 2002): 1693–95. http://dx.doi.org/10.1021/np020113r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Negre, M., M. Gennari, V. Andreoni, R. Ambrosoli und L. Celi. „Microbial metabolism of fluazifop-butyl“. Journal of Environmental Science and Health, Part B 28, Nr. 5 (Oktober 1993): 545–76. http://dx.doi.org/10.1080/03601239309372841.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Herath, Wimal, Daneel Ferreira, Julie Rakel Mikell und Ikhlas Ahmad Khan. „Microbial Metabolism. Part 5. Dihydrokawain“. CHEMICAL & PHARMACEUTICAL BULLETIN 52, Nr. 11 (2004): 1372–74. http://dx.doi.org/10.1248/cpb.52.1372.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Herath, Wimal, Daneel Ferreira und Ikhlas A. Khan. „Microbial metabolism. Part 7: Curcumin“. Natural Product Research 21, Nr. 5 (Mai 2007): 444–50. http://dx.doi.org/10.1080/14786410601082144.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Klitgord, Niels, und Daniel Segrè. „Ecosystems biology of microbial metabolism“. Current Opinion in Biotechnology 22, Nr. 4 (August 2011): 541–46. http://dx.doi.org/10.1016/j.copbio.2011.04.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Gennari, Mara, Marco Vincenti, Michèle Nègre und Roberto Ambrosoli. „Microbial metabolism of fenoxaprop-ethyl“. Pesticide Science 44, Nr. 3 (Juli 1995): 299–303. http://dx.doi.org/10.1002/ps.2780440314.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Martínez-Espinosa, Rosa María, und Carmen Pire. „Molecular Advances in Microbial Metabolism“. International Journal of Molecular Sciences 24, Nr. 9 (28.04.2023): 8015. http://dx.doi.org/10.3390/ijms24098015.

Der volle Inhalt der Quelle
Annotation:
Climate change, global pollution due to plastics, greenhouse gasses, or heavy metals among other pollutants, as well as limited natural sources due to unsustainable lifestyles and consumption patterns, are revealing the need for more research to understand ecosystems, biodiversity, and global concerns from the microscale to the macroscale [...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Bidkhori, Gholamreza, und Saeed Shoaie. „MIGRENE: The Toolbox for Microbial and Individualized GEMs, Reactobiome and Community Network Modelling“. Metabolites 14, Nr. 3 (21.02.2024): 132. http://dx.doi.org/10.3390/metabo14030132.

Der volle Inhalt der Quelle
Annotation:
Understanding microbial metabolism is crucial for evaluating shifts in human host–microbiome interactions during periods of health and disease. However, the primary hurdle in the realm of constraint-based modeling and genome-scale metabolic models (GEMs) pertaining to host–microbiome interactions lays in the efficient utilization of metagenomic data for constructing GEMs that encompass unexplored and uncharacterized genomes. Challenges persist in effectively employing metagenomic data to address individualized microbial metabolisms to investigate host–microbiome interactions. To tackle this issue, we have created a computational framework designed for personalized microbiome metabolisms. This framework takes into account factors such as microbiome composition, metagenomic species profiles and microbial gene catalogues. Subsequently, it generates GEMs at the microbial level and individualized microbiome metabolisms, including reaction richness, reaction abundance, reactobiome, individualized reaction set enrichment (iRSE), and community models. Using the toolbox, our findings revealed a significant reduction in both reaction richness and GEM richness in individuals with liver cirrhosis. The study highlighted a potential link between the gut microbiota and liver cirrhosis, i.e., increased level of LPS, ammonia production and tyrosine metabolism on liver cirrhosis, emphasizing the importance of microbiome-related factors in liver health.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Kiyota, H., S. Otsuka, A. Yokoyama, S. Matsumoto, H. Wada und S. Kanazawa. „Effects of highly volatile organochlorine solvents on nitrogen metabolism and microbial counts“. Soil and Water Research 7, No. 3 (10.07.2012): 109–16. http://dx.doi.org/10.17221/30/2011-swr.

Der volle Inhalt der Quelle
Annotation:
The effects of highly volatile organochlorine solvents (1,1,1-trichloroethane, TCET; trichloroethylene, TCE; and tetrachloroethylene, PCE) on soil nitrogen cycle and microbial counts were investigated using volcanic ash soil with different fertilizations. All the solvents significantly inhibited the activity of the cycle under the sealed conditions with 10 to 50 mg/g (dry soil) solvents added. No significant difference between the solvents, and between fertilization plots, was observed. Nitrate ion was not accumulated, and instead, ammonium ion was highly accumulated in the presence of the solvents. Nitrite ion was partially detected, while l-glutaminase activity was inhibited. The growths of ammonification, nitritation, nitratation and denitrification bacteria, and filamentous fungi were significantly inhibited in the presence of 10 mg/g (dry soil) of the solvents. 
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kuo, Jimmy, Daniel Liu und Chorng-Horng Lin. „Functional Prediction of Microbial Communities in Sediment Microbial Fuel Cells“. Bioengineering 10, Nr. 2 (03.02.2023): 199. http://dx.doi.org/10.3390/bioengineering10020199.

Der volle Inhalt der Quelle
Annotation:
Sediment microbial fuel cells (MFCs) were developed in which the complex substrates present in the sediment could be oxidized by microbes for electron production. In this study, the functional prediction of microbial communities of anode-associated soils in sediment MFCs was investigated based on 16S rRNA genes. Four computational approaches, including BugBase, Functional Annotation of Prokaryotic Taxa (FAPROTAX), the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2), and Tax4Fun2, were applied. A total of 67, 9, 37, and 38 functional features were statistically significant. Among these functional groups, the function related to the generation of precursor metabolites and energy was the only one included in all four computational methods, and the sum total of the proportion was 93.54%. The metabolism of cofactor, carrier, and vitamin biosynthesis was included in the three methods, and the sum total of the proportion was 29.94%. The results suggested that the microbial communities usually contribute to energy metabolism, or the metabolism of cofactor, carrier, and vitamin biosynthesis might reveal the functional status in the anode of sediment MFCs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Dillard, Lillian R., Dawson D. Payne und Jason A. Papin. „Mechanistic models of microbial community metabolism“. Molecular Omics 17, Nr. 3 (2021): 365–75. http://dx.doi.org/10.1039/d0mo00154f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Gray, T. R. G., und G. A. Codd. „Aspects of Microbial Metabolism and Ecology.“ Journal of Applied Ecology 23, Nr. 1 (April 1986): 357. http://dx.doi.org/10.2307/2403111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Fitzpatrick, Paul F. „The enzymes of microbial nicotine metabolism“. Beilstein Journal of Organic Chemistry 14 (31.08.2018): 2295–307. http://dx.doi.org/10.3762/bjoc.14.204.

Der volle Inhalt der Quelle
Annotation:
Because of nicotine’s toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized forArthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon–nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Wu, Bo, Feifei Liu, Wenwen Fang, Tony Yang, Guang-Hao Chen, Zhili He und Shanquan Wang. „Microbial sulfur metabolism and environmental implications“. Science of The Total Environment 778 (Juli 2021): 146085. http://dx.doi.org/10.1016/j.scitotenv.2021.146085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Amend, J. P., C. Saltikov, G. S. Lu und J. Hernandez. „Microbial Arsenic Metabolism and Reaction Energetics“. Reviews in Mineralogy and Geochemistry 79, Nr. 1 (01.01.2014): 391–433. http://dx.doi.org/10.2138/rmg.2014.79.7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Sun, Jing, Michaela A. Mausz, Yin Chen und Stephen J. Giovannoni. „Microbial trimethylamine metabolism in marine environments“. Environmental Microbiology 21, Nr. 2 (03.12.2018): 513–20. http://dx.doi.org/10.1111/1462-2920.14461.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie