Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Microbial inoculants“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Microbial inoculants" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Microbial inoculants"
Shen, Minchong, Jiangang Li, Yuanhua Dong, Zhengkun Zhang, Yu Zhao, Qiyun Li, Keke Dang, Junwei Peng und Hong Liu. „The Effects of Microbial Inoculants on Bacterial Communities of the Rhizosphere Soil of Maize“. Agriculture 11, Nr. 5 (25.04.2021): 389. http://dx.doi.org/10.3390/agriculture11050389.
Der volle Inhalt der QuelleLi, Chong, Zhaohui Jia, Shilin Ma, Xin Liu, Jinchi Zhang und Christoph Müller. „Plant and Native Microorganisms Amplify the Positive Effects of Microbial Inoculant“. Microorganisms 11, Nr. 3 (24.02.2023): 570. http://dx.doi.org/10.3390/microorganisms11030570.
Der volle Inhalt der QuelleLiu, Yi-Ming, Fang Zheng, Zhao-Hui Liu, Hai-Bo Lan, Ye-Hong Cui, Tong-Guo Gao, Marja Roitto und Ai-Fang Wang. „Enhanced Root and Stem Growth and Physiological Changes in Pinus bungeana Zucc. Seedlings by Microbial Inoculant Application“. Forests 13, Nr. 11 (04.11.2022): 1836. http://dx.doi.org/10.3390/f13111836.
Der volle Inhalt der QuelleBroschat, Timothy K., und Monica L. Elliott. „Effects of Fertilization and Microbial Inoculants Applied at Transplanting on the Growth of Mexican Fan Palm and Queen Palm“. HortTechnology 19, Nr. 2 (Januar 2009): 324–30. http://dx.doi.org/10.21273/hortsci.19.2.324.
Der volle Inhalt der QuelleCalvo, Pamela, Dexter B. Watts, Joseph W. Kloepper und H. Allen Torbert. „The influence of microbial-based inoculants on N2O emissions from soil planted with corn (Zea maysL.) under greenhouse conditions with different nitrogen fertilizer regimens“. Canadian Journal of Microbiology 62, Nr. 12 (Dezember 2016): 1041–56. http://dx.doi.org/10.1139/cjm-2016-0122.
Der volle Inhalt der QuellePrischmann-Voldseth, Deirdre A., Tülin Özsisli, Laura Aldrich-Wolfe, Kirk Anderson und Marion O. Harris. „Microbial Inoculants Differentially Influence Plant Growth and Biomass Allocation in Wheat Attacked by Gall-Inducing Hessian Fly (Diptera: Cecidomyiidae)“. Environmental Entomology 49, Nr. 5 (29.08.2020): 1214–25. http://dx.doi.org/10.1093/ee/nvaa102.
Der volle Inhalt der QuelleMa, Hua, Vyacheslav Shurigin, Dilfuza Jabborova, Jeane Aril dela Cruz, Thomas Edison dela Cruz, Stephan Wirth, Sonoko Dorothea Bellingrath-Kimura und Dilfuza Egamberdieva. „The Integrated Effect of Microbial Inoculants and Biochar Types on Soil Biological Properties, and Plant Growth of Lettuce (Lactuca sativa L.)“. Plants 11, Nr. 3 (03.02.2022): 423. http://dx.doi.org/10.3390/plants11030423.
Der volle Inhalt der QuelleRaja, P., und V. P. Santhi. „Comparative study of microbial inoculants of cultivated and virgin soils of Nilgiri Biosphere for plant growth promotion“. INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES 17, Nr. 2 (15.06.2021): 293–98. http://dx.doi.org/10.15740/has/ijas/17.2/293-298.
Der volle Inhalt der QuelleSharma, A. K., und P. N. Bhattacharyya. „Effect of Beneficial Microorganisms on Cowpea Productivity and Soil Health“. Journal of Advance Research in Pharmacy & Biological Science (ISSN: 2208-2360) 2, Nr. 5 (31.05.2016): 15–21. http://dx.doi.org/10.53555/nnpbs.v2i5.702.
Der volle Inhalt der QuelleAdesemoye, A. O., H. A. Torbert und J. W. Kloepper. „Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system“. Canadian Journal of Microbiology 54, Nr. 10 (Oktober 2008): 876–86. http://dx.doi.org/10.1139/w08-081.
Der volle Inhalt der QuelleDissertationen zum Thema "Microbial inoculants"
Carter, Jonathan Philip. „Population biology of Trichoderma spp. used as inoculants“. Thesis, University of Reading, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329046.
Der volle Inhalt der QuelleCepeda, Maria Veronica. „Effects of Microbial Inoculants on Biocontrol and Plant Growth Promotion“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345239027.
Der volle Inhalt der QuelleRogers, Stephen Lloyd. „The effect of phototrophic microbial inoculants on soil aggregate stability and soil fertility“. Thesis, University of Kent, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305060.
Der volle Inhalt der QuelleMeikle, Audrey. „Luminescence based monitoring of genetically modified microbial inoculants in the soil“. Thesis, University of Aberdeen, 1992. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU065698.
Der volle Inhalt der QuelleLevesley, Mark Howard. „Potential applications of Agrobacterium virulence gene promoters in plant-protecting microbial inoculants“. Thesis, Durham University, 1994. http://etheses.dur.ac.uk/5508/.
Der volle Inhalt der QuelleBradácová, Klára [Verfasser], und Günter [Akademischer Betreuer] Neumann. „Microbial consortia as inoculants for improvedcrop performance / Klára Bradácová ; Betreuer: Günter Neumann“. Hohenheim : Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim, 2020. http://d-nb.info/1214709761/34.
Der volle Inhalt der QuelleKantachote, Duangporn. „The use of microbial inoculants to enhance DDT degradation in contaminated soil“. Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phk165.pdf.
Der volle Inhalt der QuelleCadena, Cepeda Marleny Kloepper Joseph. „Assessing soil microbial populations and activity following the use of microbial inoculants effect on disease suppressiveness and soil health /“. Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Fall/Theses/CADENA_MARLENY_3.pdf.
Der volle Inhalt der QuelleGillis, Donald Patriq Bruce Gillis. „Assessment of a novel delivery system for microbial inoculants and the novel microbe Mitsuaria spp. H24L5A“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461312230.
Der volle Inhalt der QuelleNelson, Jason Scott. „Organic and inorganic fertilization with and without microbial inoculants in peat-based substrate and hydroponic crop production“. Thesis, Kansas State University, 2013. http://hdl.handle.net/2097/15574.
Der volle Inhalt der QuelleDepartment of Horticulture, Forestry, and Recreation Resources
Kimberly A. Williams
Liquid organic fertilizers and microbial inoculants of beneficial microorganisms are garnering interest from commercial greenhouse growers who seek to produce crops more sustainably, but research about their efficacy is limited and results are conflicting. This research focused on comparing the effect of microbial inoculant addition in two soilless crop production systems under organic versus conventional fertilization. Two experiments were conducted with impatiens (Impatiens walleriana) in a peat-based substrate and four experiments were conducted with butterhead lettuce (Latuca sativa) in nutrient film technique (NFT) hydroponics. In the impatiens studies, nitrogen, phosphorus, and potassium were incorporated pre-plant equally across treatments using OsmocoteTM, or organic fertilizers Bloodmeal or Feathermeal. An inorganic constant liquid feed (CLF) was also evaluated. Microbial inoculants that contained a variety of beneficial species, including Bacillus spp. and Trichoderma spp. were drench-applied at the beginning of the cropping cycle. Impatiens growth was comparable between the nutrient regimens in one of the studies. CO2 respiration was measured on substrate samples. At a 5X application rate, inoculants contributed to subtle increases in plant growth in organic treatments, but microbial activity was unaffected as measured by CO2 respiration. However, organic nutrient sources contributed to higher CO2 respiration at day 7 of the production cycle compared to inorganic nutrient sources. The hydroponic trials consisted of inorganic and organic nutrient regimens, evaluated with and without microbial inoculant addition. Nutrient analyses and CO2 respiration of the nutrient solutions were collected. Use of inoculants resulted in increased plant growth when used in organic nutrient regimens in some trials. Plant dry weight and CO2 respiration in the inorganic nutrient regimens were increased in certain instances with inoculant addition. No differences in mycorrhizal root colonization were observed in either nutrient regimen with mycorrhizal inoculant addition. Petiole NO3-N concentration of lettuce plants grown with inorganic nutrient sources was greater than that of plants in organic regimens. Organic fertilizers and inoculant products resulted in comparable or positive impacts on plant growth and food crop quality in some treatment scenarios in these studies. The specific circumstances of crop production systems dictate whether plant growth response may occur from inoculant incorporation.
Bücher zum Thema "Microbial inoculants"
Singh, Dhananjaya Pratap, Harikesh Bahadur Singh und Ratna Prabha, Hrsg. Microbial Inoculants in Sustainable Agricultural Productivity. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2644-4.
Der volle Inhalt der QuelleSingh, Dhananjaya Pratap, Harikesh Bahadur Singh und Ratna Prabha, Hrsg. Microbial Inoculants in Sustainable Agricultural Productivity. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2647-5.
Der volle Inhalt der QuelleAbud, Yazmín Carreón. Hongos micorrízicos arbusculares: Conservación y bioinoculantes. Morelia, Michoacán, México: SEP, Secretaría de Educación Pública, Estados Unidos Mexicanos, 2013.
Den vollen Inhalt der Quelle findenBrown, Michael R. W. 1931- und Gilbert Peter, Hrsg. Microbiological quality assurance: A guide towards relevance and reproducibility of inocula. Boca Raton, Fl: CRC Press, 1995.
Den vollen Inhalt der Quelle findenMultipurpose trees and shrubs: Sources of seeds and inoculants. Nairobi, Kenya: International Council for Research in Agroforestry, 1991.
Den vollen Inhalt der Quelle findenR, Kindt, Von Carlowitz P und International Centre for Research in Agroforestry., Hrsg. Tree seed suppliers directory: Sources of seeds and microsymbionts. Nairobi, Kenya: International Centre for Research in Agroforestry, 1997.
Den vollen Inhalt der Quelle findenBacterial-fungal interactions highlighted using microbiomics: Potential application for plant growth enhancement. Uppsala: Swedish University of Agricultural Sciences, 2005.
Den vollen Inhalt der Quelle findenMajor, David William. A survey of microbial inoculants for bioremediation and identification of information requirements suitable for the feasibility evaluation and validation of bioremediation. [Toronto]: Ontario Environment, 1992.
Den vollen Inhalt der Quelle findenKumar, Ajay, Vijay Kumar Sharma, Vipin Kumar Singh, Shobhika Parmar und Michel R. Zambrano Passarini. Microbial Inoculants: Recent Progress and Applications. Elsevier Science & Technology Books, 2022.
Den vollen Inhalt der Quelle findenMicrobial Inoculants: Recent Progress and Applications. Elsevier Science & Technology, 2022.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Microbial inoculants"
Siddiqui, Zaki A., und Ryota Kataoka. „Mycorrhizal Inoculants: Progress in Inoculant Production Technology“. In Microbes and Microbial Technology, 489–506. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7931-5_18.
Der volle Inhalt der QuelleTrivedi, Shubha, Mukesh Srivastava, Sonika Pandey und Sanat Kumar Dwibedi. „Bio-Inoculants“. In Microbial Based Land Restoration Handbook, Volume 2, 273–88. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003147077-13.
Der volle Inhalt der QuelleSuyal, Deep Chandra, Ravindra Soni, Santosh Sai und Reeta Goel. „Microbial Inoculants as Biofertilizer“. In Microbial Inoculants in Sustainable Agricultural Productivity, 311–18. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2647-5_18.
Der volle Inhalt der QuellePathak, D. V., und Mukesh Kumar. „Microbial Inoculants as Biofertilizers and Biopesticides“. In Microbial Inoculants in Sustainable Agricultural Productivity, 197–209. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2647-5_11.
Der volle Inhalt der QuellePatil, C. R., und A. R. Alagawadi. „Microbial Inoculants for Sustainable Legume Production“. In Microbes for Legume Improvement, 515–36. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99753-6_21.
Der volle Inhalt der QuelleSingh, Dhananjaya Pratap, Ratna Prabha und Vijai Kumar Gupta. „Microbial Inoculants for Sustainable Crop Management“. In Microbial Interventions in Agriculture and Environment, 1–35. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8383-0_1.
Der volle Inhalt der QuelleMehta, C. M., Byiringiro Emmanuel, Amit Kesarwani, Kanak Sirari und Anil K. Sharma. „Nutrient Management Strategies Based on Microbial Functions“. In Microbial Inoculants in Sustainable Agricultural Productivity, 143–63. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2644-4_10.
Der volle Inhalt der QuelleSathya, Arumugam, Rajendran Vijayabharathi und Subramaniam Gopalakrishnan. „Soil Microbes: The Invisible Managers of Soil Fertility“. In Microbial Inoculants in Sustainable Agricultural Productivity, 1–16. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2644-4_1.
Der volle Inhalt der QuelleKaur, Chandandeep, G. Selvakumar und A. N. Ganeshamurthy. „Organic Acids in the Rhizosphere: Their Role in Phosphate Dissolution“. In Microbial Inoculants in Sustainable Agricultural Productivity, 165–77. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2644-4_11.
Der volle Inhalt der QuelleSahu, P. K., und G. P. Brahmaprakash. „Formulations of Biofertilizers – Approaches and Advances“. In Microbial Inoculants in Sustainable Agricultural Productivity, 179–98. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2644-4_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Microbial inoculants"
Cheverdin, A. Y., und Y. I. Cheverdin. „The influence of microbial preparations on the dynamics of growth of the vegetative mass of winter wheat“. In Agrobiotechnology-2021. Publishing house of RGAU - MSHA, 2021. http://dx.doi.org/10.26897/978-5-9675-1855-3-2021-60.
Der volle Inhalt der QuelleJin-Chao, Wu, Huang Guang-Rong, Yu Miao und Tan Yong-Hua. „Acute oral toxicity and Ames-mutagenicity of domestic waste decomposing microbial inoculants WU-1“. In 2011 International Conference on Human Health and Biomedical Engineering (HHBE). IEEE, 2011. http://dx.doi.org/10.1109/hhbe.2011.6028958.
Der volle Inhalt der QuelleKamaruddin, M. A., F. A. Norashiddin, A. F. M. Idrus, M. H. Zawawi und R. Alrozi. „A study on the effects of different microbial inoculants on the decomposition of organic waste by using semi passive aerated reactor“. In GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS: Proceedings of the 4th International Conference on Green Design and Manufacture 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5066840.
Der volle Inhalt der QuelleNarasimhaiah, Ashwini, Pramod Kumar, Ajay Kumar Joshi, Naveen Chand Sharma, Rajesh Kaushal, Nivedita Sharma, Nisha Sharma und Simran Saini. „The Stimulatory Effects of Humic Substances and Microbial Inoculants on Cropping Performance of Guava (Psidium guajava L.) cv. Lalit in Meadow Orcharding System“. In IECHo 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iecho2022-12503.
Der volle Inhalt der QuelleMikhailouskaya, N. A., D. V. Voitka, E. K. Yuzefovich und T. B. Barashenko. „Effect of three-component microbial inoculant on winter rye and spring barley yields“. In РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.17.
Der volle Inhalt der QuelleMikhailouskaya, N. A., D. V. Voitka und E. K. Yuzefovitch. „Microbial composition with the properties of plant growth promoter, biofertilizer and biological fungicide“. In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.170.
Der volle Inhalt der QuelleSouza, Khaoanny De, Leandra Karpinski und Patricia Dayane Carvalho Schaker. „BIOPROSPECÇÃO DE FUNGOS ENDOFÍTICOS DE KALANCHOE DAIGREMONTIANA COM ATIVIDADE ANTIOXIDANTE“. In II Congresso Brasileiro de Biotecnologia On-line. Revista Multidisciplinar de Educação e Meio Ambiente, 2022. http://dx.doi.org/10.51189/conbiotec/21.
Der volle Inhalt der QuelleDa Silva, Maria Carolina Raiol, Daniel Vitor Da Silva Monteiro, Daniele De Lima Dos Santos, Ediberto Nunes und Jaqueline Salim Brabo. „MECANISMO DE DEFESA DO SISTEMA IMUNOLÓGICO CONTRA ÀS SUPERBACTÉRIAS.“ In I Congresso Brasileiro de Imunologia On-line. Revista Multidisciplinar em Saúde, 2021. http://dx.doi.org/10.51161/rems/945.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Microbial inoculants"
Weinberg, Zwi G., Adegbola Adesogan, Itzhak Mizrahi, Shlomo Sela, Kwnag Jeong und Diwakar Vyas. effect of selected lactic acid bacteria on the microbial composition and on the survival of pathogens in the rumen in context with their probiotic effects on ruminants. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598162.bard.
Der volle Inhalt der QuelleCrowley, David E., Dror Minz und Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, Juli 2013. http://dx.doi.org/10.32747/2013.7594387.bard.
Der volle Inhalt der QuelleKnotek-Smith, Heather, und Catherine Thomas. Microbial dynamics of a fluidized bed bioreactor treating perchlorate in groundwater. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45403.
Der volle Inhalt der Quelle