Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Micro-sized particles of iron oxide“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Micro-sized particles of iron oxide" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Micro-sized particles of iron oxide"
Muska, M., A. Naeem, M. Hamayun, S. L. Badshah, M. Farooq, M. Fida, A. Mahmood, K. H. Shah und Y. N. Mabkhot. „Comparative sorption studies of chromate by nano-and-micro sized Fe2O3 particles“. Open Chemistry 15, Nr. 1 (14.06.2017): 147–55. http://dx.doi.org/10.1515/chem-2017-0016.
Der volle Inhalt der QuelleKong, Yuan Yuan, und Hao Zhou. „Formation and Magnetic Characterization of Magnesium Oxide / Iron Nano Composite Particles“. Advanced Materials Research 236-238 (Mai 2011): 1927–30. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.1927.
Der volle Inhalt der QuelleKhushnood, Rao Arsalan, Siraj ud din, Nafeesa Shaheen, Sajjad Ahmad und Filza Zarrar. „Bio-inspired self-healing cementitious mortar using Bacillus subtilis immobilized on nano-/micro-additives“. Journal of Intelligent Material Systems and Structures 30, Nr. 1 (03.11.2018): 3–15. http://dx.doi.org/10.1177/1045389x18806401.
Der volle Inhalt der QuelleCuong, Le Viet, Pham Duc Thang und Nguyen The Hien. „A Simple Process to Fabricate Micro Flux Sources with High Magnetic Field Gradient“. Communications in Physics 24, Nr. 3S1 (07.11.2014): 85–89. http://dx.doi.org/10.15625/0868-3166/24/3s1/5225.
Der volle Inhalt der QuelleYogo, Toshinobu, Tomoyuki Nakamura, Wataru Sakamoto und Shin-ichi Hirano. „Synthesis of magnetic particle/organic hybrid from metalorganic compounds“. Journal of Materials Research 14, Nr. 7 (Juli 1999): 2855–60. http://dx.doi.org/10.1557/jmr.1999.0381.
Der volle Inhalt der QuelleSiddhartha, O. Sai, und S. V. Satyanarayana. „Iron Oxides' Influence on the Thermal Decomposition of Pure Ammonium Perchlorate: A Comprehensive Review“. Scholars International Journal of Chemistry and Material Sciences 7, Nr. 04 (09.04.2024): 35–44. http://dx.doi.org/10.36348/sijcms.2024.v07i04.001.
Der volle Inhalt der QuelleChandrasekharan, Prashant, Renesmee Kuo, K. L. Barry Fung, Chinmoy Saayujya, Jacob Bryan, Mariam Yousuf, Benjamin Fellows et al. „Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis“. Molecular Imaging 2023 (15.03.2023): 1–22. http://dx.doi.org/10.1155/2023/4131117.
Der volle Inhalt der QuelleHuang, Yuan Ming, Bao Gai Zhai, Qing Lan Ma und Ming Meng. „Magnetic Properties of Ferrous Ferric Oxide Confined in Porous Silicon“. Materials Science Forum 663-665 (November 2010): 1142–45. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.1142.
Der volle Inhalt der QuelleLeybo, Denis, Marat Tagirov, Elizaveta Permyakova, Anton Konopatsky, Konstantin Firestein, Feruza Tuyakova, Dmitry Arkhipov und Denis Kuznetsov. „Ascorbic Acid-Assisted Polyol Synthesis of Iron and Fe/GO, Fe/h-BN Composites for Pb2+ Removal from Wastewaters“. Nanomaterials 10, Nr. 1 (22.12.2019): 37. http://dx.doi.org/10.3390/nano10010037.
Der volle Inhalt der QuelleMehdikhani, Behzad, und Gholam Borhani. „Optical spectroscopy of sodium silicate glasses prepared with nano- and micro-sized iron oxide particles“. Processing and Application of Ceramics 7, Nr. 3 (2013): 117–21. http://dx.doi.org/10.2298/pac1303117m.
Der volle Inhalt der QuelleDissertationen zum Thema "Micro-sized particles of iron oxide"
Yang, Yidong. „Monitoring cell infiltration into the myocardial infarction site using micrometer-sized iron oxide particles-enhanced magnetic resonance imaging“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41151.
Der volle Inhalt der QuellePedron, Swannie. „Ιmagerie mοléculaire utilisant des micrοparticules d'οxyde de fer pοur la détectiοn de l'inflammatiοn cardiaque (par Ιmagerie par Résοnance Μagnétique) et de l'inflammatiοn pulmοnaire (par Ιmagerie à Ρarticules Μagnétiques - ΙΡΜ οu ΜΡΙ)“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC419.
Der volle Inhalt der QuelleConventional imaging methods such as cardiac MRI and thoracic CT scans are commonly used for diagnosing cardiovascular and pulmonary diseases. However, they only identify functional and anatomical abnormalities, and detecting the inflammatory component involved in these pathologies remains challenging. In this thesis, we develop a new molecular imaging approach called "immunoMRI," which targets endothelial adhesion molecules involved in recruiting leukocytes to inflammatory sites. Using iron oxide microparticles conjugated with a VCAM-1 antibody (MPIO@αVCAM-1), we assessed the ability of immuno-MRI to specifically detect cardiac inflammation in vivo in animal models of septic cardiac dysfunction and experimental autoimmune myocarditis (EAM). We also compared the effectiveness of immuno-MRI in detecting cardiac inflammation to late gadolinium enhancement, which is used in clinical practice and considered the gold standard for myocarditis diagnosis. In the second part of this work, we developed the use of a new imaging device called "Magnetic Particle Imaging" (MPI), which detects iron oxide particles to create whole-body images without using ionizing radiation. Through models of sepsis and infectious respiratory disease, we demonstrated that MPI coupled with MPIO@αVCAM-1 is a rapid, sensitive, and non-invasive tool for detecting pulmonary inflammation. Our data provide the first evidence suggesting the potential future application of immuno-MRI and MPI for diagnosing inflammatory cardiac and pulmonary conditions
Liu, Lixiang. „Nickel-Iron Oxide-based Nanomembranes as Anodes for Micro-Lithium-Ion Batteries“. 2020. https://monarch.qucosa.de/id/qucosa%3A72231.
Der volle Inhalt der QuelleBuchteile zum Thema "Micro-sized particles of iron oxide"
Anthony, Daniel C., Nicola R. Sibson, Martina A. McAteer, Ben Davis und Robin P. Choudhury. „Detection of Brain Pathology by Magnetic Resonance Imaging of Iron Oxide Micro-particles“. In Methods in Molecular Biology, 213–27. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-938-3_9.
Der volle Inhalt der QuelleMargel, Shlomo, Tammy Lublin‐Tennenbaum, Sigalit Gura, Merav Tsubery, Udi Akiva, Nava Shpaisman, Anna Galperin et al. „Synthesis and characterization of nano‐ and micron‐sized iron oxide and iron particles for biomedical applications“. In Laboratory Techniques in Biochemistry and Molecular Biology, 119–62. Elsevier, 2007. http://dx.doi.org/10.1016/s0075-7535(06)32006-2.
Der volle Inhalt der QuelleA. Awe, Samuel. „Root Cause Failure Analysis of Castings: A Case Study of a Brake Rotor“. In Failure Analysis [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107950.
Der volle Inhalt der QuelleSarkar Shathi, Tonmoye, und Abdur Rahman. „Functionalized ferrites for therapeutics and environmental pollution management“. In Applications of Ferrites [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1002336.
Der volle Inhalt der QuelleAnanth, M. Prem, und J. Sivaramapandian. „EVALUATION OF THE MECHANICAL CHARACTERISTICS OF B4C AND ALUMINIUM OXIDE REINFORCED HYBRID ALUMINIUM COMPOSITES FOR THE AUTOMOBILE, AEROSPACE APPLICATION IN FUTURE“. In Futuristic Trends in Mechanical Engineering Volume 3 Book 6, 224–35. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bgme6p4ch3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Micro-sized particles of iron oxide"
Dutta, Abhishek, Sakya Mohapatra, Atanu Sen und Sudarshan Mukherjee. „Alternative for by-pass surgery using iron-oxide nano-particles“. In 2006 Bio Micro and Nanosystems Conference. IEEE, 2006. http://dx.doi.org/10.1109/bmn.2006.330890.
Der volle Inhalt der QuelleKurtoglu, Evrim, Alihan Kaya, Devrim Gözüaçık, Havva Funda Yağcı Acar und Ali Kosar. „Heat Transfer Enhancement With Iron Oxide Nanoparticle Based Ferrofluids“. In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73146.
Der volle Inhalt der QuelleDormer, Kenneth, Sunny Po, Kejian Chen, Benjamin Scherlag, Isaac Rutel, Kytai Nguyen, Satish Kyriyavar et al. „Magnetic Targeting of Therapeutics“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13022.
Der volle Inhalt der QuelleKurtoglu, Evrim, Alihan Kaya, Havva Funda Yagci Acar und Ali Kosar. „An Experimental Study on Heat Transfer Performance of Iron Oxide Based Ferrofluids“. In ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icnmm2012-73126.
Der volle Inhalt der QuelleHan, Zenghu, Bao Yang, S. H. Kim und M. R. Zachariah. „Nanofluids Containing Hybrid Sphere/Carbon Nanotube Particles“. In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21331.
Der volle Inhalt der QuelleKhanolkar, Ratnesh U., und A. K. Suresh. „Effect of Material of Nanoparticle on Mass Transfer Enhancement and a Convective Diffusion Model to Predict the Enhancement“. In ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22178.
Der volle Inhalt der QuelleSu, Di, Ronghui Ma und Liang Zhu. „Numerical Study of Nanofluid Transport in Tumors During Nanofluid Infusion for Magnetic Nanoparticle Hyperthermia Treatment“. In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75101.
Der volle Inhalt der QuelleGoto, Y., S. Kawanishi, S. Natsui, J. Takahashi und H. Nogami. „Direct observation of the fayalite slag formation behaviour from large SiO2 grains“. In 12th International Conference of Molten Slags, Fluxes and Salts (MOLTEN 2024) Proceedings, 653–62. Australasian Institute of Mining and Metallurgy (AusIMM), 2024. http://dx.doi.org/10.62053/jhaw7732.
Der volle Inhalt der QuelleManzo, Maurizio, und Megha Bakaraju. „Fabrication and Testing of Asymmetric Magnetic-Polymer Flexible Sheets for Biomedical Actuated Devices“. In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95020.
Der volle Inhalt der QuelleSandri, Monica, Michele Iafisco, Silvia Panseri, Elisa Savini und Anna Tampieri. „Fully Biodegradable Magnetic Micro-Nanoparticles: A New Platform for Tissue Regeneration and Theranostic“. In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93223.
Der volle Inhalt der Quelle