Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: MeV ions.

Zeitschriftenartikel zum Thema „MeV ions“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "MeV ions" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Sugden, S., C. J. Sofield und M. P. Murrell. „Sputtering by MeV ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 67, Nr. 1-4 (April 1992): 569–73. http://dx.doi.org/10.1016/0168-583x(92)95875-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Conlon, T. W. „Materials characterization with MeV ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 (April 1989): 828–32. http://dx.doi.org/10.1016/0168-583x(89)90487-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Ke-Ming, Bo-Rong Shi, Pei-Jun Ding, Wei Wang, W. A. Lanford, Zhuang Zhuo und Yao-Gang Liu. „Waveguide formation of KTiOPO4 by multienergy MeV He+ implantation“. Journal of Materials Research 11, Nr. 6 (Juni 1996): 1333–35. http://dx.doi.org/10.1557/jmr.1996.0169.

Der volle Inhalt der Quelle
Annotation:
X-cut potassium titanyl phosphate (KTiOPO4 or KTP) was implanted by multienergy MeV He+ implantation with a total dose of 2 × 1016 ions/cm2 at liquid nitrogen temperature. The energy and dose used are as follows: 3.3 MeV and 2 × 1015 ions/cm2, 3.2 MeV and 4 × 1015 ions/cm2, 3.1 MeV and 4 × 1015 ions/cm2, and 3.0 MeV and 1.0 × 1016 ions/cm2 to reduce tunneling effect. The 22 dark modes were measured by the isosceles prism coupling method. The 15 bright modes were observed after 250 °C, 60 min annealing. The result shows that the waveguide formation of KTiOPO4 implanted by MeV He+ is not strongly dependent on the cut direction, which is different from the waveguide formation of KTiOPO4 by ion exchange process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Qiu, Yuanxun, Jiayong Tang, Liqing Pan, Guoqing Zhao, Zhuying Zhou, Xiliang Gu, Ye Feng und Fujia Yang. „Interface adhesion enhanced by MeV ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 56-57 (Mai 1991): 634–38. http://dx.doi.org/10.1016/0168-583x(91)96113-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sugden, S., C. J. Sofield und M. P. Murrell. „Radiation enhanced adhesion by MeV ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 67, Nr. 1-4 (April 1992): 452–57. http://dx.doi.org/10.1016/0168-583x(92)95851-h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kim, M. J., M. Catalano, T. P. Sjoreen und R. W. Carpenter. „Microstructure of silicon implanted with MeV gold ions“. Proceedings, annual meeting, Electron Microscopy Society of America 49 (August 1991): 876–77. http://dx.doi.org/10.1017/s0424820100088695.

Der volle Inhalt der Quelle
Annotation:
High-energy implantation of silicon is of great interest in recent years for microelectronics due to the formation of a buried damage or dopant layer away from the active region of the device. The damage nucleation and growth behavior is known to vary significantly along the ion's track for MeV irradiation. In this paper, a detailed characterization of the damage morphology produced by MeV gold ions for different doses into single crystal Si, as well as the associated annealing behavior, is presented.Single crystal n-type Czochralski silicon {001} wafers were implanted with Au++ ions from doses of 1x1015 to 3x1016 cm-2 at 2-3 MeV. Specimen temperatures for all implantations were 20 or 300°C. A measurement with an infrared pyrometer of the implanted surface indicated a slight temperature rise during ion irradiation. The compositional and damage profiles were determined by Rutherford backscattering/channeling spectroscopy (RBS). Cross-sectional TEM samples for microstructural characterization were prepared by mechanical polishing and ion milling. A Philips 400ST/FEG analytical microscope was used for nanoprobe experiments, at 100 kV. Microstructural investigation was performed using ISI-002B and JEM-2000FX microscopes, at 200 kV.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

TOMBRELLO, T. A. „MODIFICATION OF ELECTRONIC MATERIALS WITH MeV IONS“. Le Journal de Physique Colloques 50, Nr. C2 (Februar 1989): C2–1—C2–7. http://dx.doi.org/10.1051/jphyscol:1989201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kazumata, Yukio, Satoru Okayasu und Takeo Aruga. „YBa2Cu3OxFilms Irradiated by 120 MeV Oxygen Ions“. Japanese Journal of Applied Physics 33, Part 1, No. 2 (15.02.1994): 1012–17. http://dx.doi.org/10.1143/jjap.33.1012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Torrisi, L., S. Coffa, G. Foti und G. Strazzulla. „Sulphur erosion by 1.0 Mev helium ions“. Radiation Effects 100, Nr. 1-2 (Dezember 1986): 61–69. http://dx.doi.org/10.1080/00337578608208736.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tombrello, T. A. „Damage in metals from MeV heavy ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 95, Nr. 4 (April 1995): 501–4. http://dx.doi.org/10.1016/0168-583x(94)00605-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Tomaschko, Ch, Ch Schoppmann, D. Brandl und H. Voit. „Acceleration of cluster ions to MeV energies“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 88, Nr. 1-2 (April 1994): 6–9. http://dx.doi.org/10.1016/0168-583x(94)96071-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Roth, Ilan. „MeV acceleration processes for heliospheric heavy ions“. Advances in Space Research 38, Nr. 1 (Januar 2006): 75–84. http://dx.doi.org/10.1016/j.asr.2004.11.046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

HASEGAWA, J., N. YOKOYA, Y. KOBAYASHI, M. YOSHIDA, M. KOJIMA, T. SASAKI, H. FUKUDA, M. OGAWA, Y. OGURI und T. MURAKAMI. „Stopping power of dense helium plasma for fast heavy ions“. Laser and Particle Beams 21, Nr. 1 (Januar 2003): 7–11. http://dx.doi.org/10.1017/s0263034602211027.

Der volle Inhalt der Quelle
Annotation:
The interaction process between fast heavy ions and dense plasma was experimentally investigated. We injected 4.3-MeV/u or 6.0-MeV/u iron ions into a z-pinch-discharge helium plasma and measured the energy loss of the ions by the time of flight method. The energy loss of 4.3-MeV/u ions fairly agreed with theoretical prediction when the electron density of the target was on the order of 1018 cm−3. With increasing electron density beyond 1019 cm−3, the difference between the experiment and the theory became remarkable; the experimental energy loss was 15% larger than the theoretical value at the peak density. For 6.0-MeV/u ions, the deviation from the theory appeared even at densities below 1019 cm−3. These discrepancies indicated that density effects such as ladderlike ionization caused the enhancement of the projectile mean charge in the target.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Melikhova, Oksana, Jakub Čížek, Ivan Procházka, Petr Hruška, Wolfgang Anwand, Vladimír Havránek, Vladimir A. Skuratov und Tatiana S. Strukova. „Study of Defects in High Energy Ion Implanted ZnO Crystals“. Defect and Diffusion Forum 373 (März 2017): 193–96. http://dx.doi.org/10.4028/www.scientific.net/ddf.373.193.

Der volle Inhalt der Quelle
Annotation:
Positron annihilation spectroscopy (PAS) was employed for characterization of defects in the hydrothermally (HT) grown zinc oxide single crystals irradiated by high energy ions. Defects created in ZnO crystals by 2.5 MeV protons, 7.5 MeV N3+ and 167 MeV Xe26+ ions were compared. The virgin ZnO crystals contain Zn-vacancies associated with hydrogen. Ion implantation introduced additional defects, namely Zn+O di-vacancies in crystals irradiated by protons and small vacancy clusters in samples implanted by N and Xe ions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

MOKUNO, Y., Y. HORINO, A. KINOMURA, A. CHAYAHARA und K. FUJII. „MICRO PIXE ANALYSIS USING AN X-RAY FROM INCIDENT IONS“. International Journal of PIXE 03, Nr. 04 (Januar 1993): 307–12. http://dx.doi.org/10.1142/s0129083593000276.

Der volle Inhalt der Quelle
Annotation:
A possibility of using an X-ray from incident ions in micro PIXE measurement with MeV heavy ions was discussed. To reveal the feature, a Cu-Ti plate was analyzed by a 5 MeV silicon and a 5 MeV nickel ion microprobe and the PIXE-mapping images of the X-rays from the incident ions were compared with the normal PIXE-mapping images of the X-rays from the target. These images indirectly reflected the distribution of a specific element with good statistics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Domaracka, A., E. Seperuelo Duarte, P. Boduch, H. Rothard, E. Balanzat, E. Dartois, S. Pilling, L. S. Farenzena und E. F. da Silveira. „Irradiation effects in CO and CO2 ices induced by swift heavy Ni ions at 46 MeV and 537 MeV“. Proceedings of the International Astronomical Union 5, S265 (August 2009): 428–29. http://dx.doi.org/10.1017/s174392131000116x.

Der volle Inhalt der Quelle
Annotation:
AbstractIn order to simulate the effects of the heavy ion component of cosmic rays on ices in astrophysical environments, the CO and CO2 ices were irradiated with swift nickel ions in the electronic energy loss regime. The ices were prepared by condensing gas onto a CsI substrate at a temperature of 14 K and analyzed by means of infrared (FTIR) spectroscopy. The physical process of deposition by Ni ions is similar to more important and abundant heavy cosmic rays such as Fe ions. Dissociation of the ice molecules, and formation of new molecules were observed. Also, sputtering (leading to desorption of molecules from the solid surface to the gas phase) was observed. It was found that the sputtering yield due to heavy ions cannot be neglected with respect to desorption induced by weakly ionizing particles such as UV photons and protons.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Singh, Lakhwant, Kawaljeet Singh Samra, Ravinder Singh und Ramneek Kumar. „Carbon (70 MeV) and copper (120 MeV) ions irradiation effects in Makrofol-N“. Radiation Effects and Defects in Solids 163, Nr. 8 (August 2008): 703–11. http://dx.doi.org/10.1080/10420150701772950.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Seki, T., S. Shitomoto, S. Nakagawa, T. Aoki und J. Matsuo. „An electrostatic quadrupole doublet focusing system for MeV heavy ions in MeV-SIMS“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 315 (November 2013): 356–59. http://dx.doi.org/10.1016/j.nimb.2013.05.069.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

KIM, Sunghwan. „LET Calibration of Fe 500 MeV/u Ions using SSNTD“. Journal of Sensor Science and Technology 25, Nr. 1 (31.01.2016): 41–45. http://dx.doi.org/10.5369/jsst.2016.25.1.41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Tao, Zheng, Lu Xiting, Zhai Yongjun, Xia Zonghuang, Shen Dingyu, Wang Xuemei und Zhao Qiang. „Stopping power for MeV 12C ions in solids“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 135, Nr. 1-4 (Februar 1998): 169–74. http://dx.doi.org/10.1016/s0168-583x(97)00585-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Jensen, J., A. Dunlop, S. Della-Negra und H. Pascard. „Tracks in YIG induced by MeV C60 ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 135, Nr. 1-4 (Februar 1998): 295–301. http://dx.doi.org/10.1016/s0168-583x(97)00606-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Evelyn, A. L., D. Ila, R. L. Zimmerman, K. Bhat, D. B. Poker und D. K. Hensley. „Effects of MeV ions on PE and PVDC“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 141, Nr. 1-4 (Mai 1998): 164–68. http://dx.doi.org/10.1016/s0168-583x(98)00153-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Yixiong, Shen, Lu Xiting, Xia Zonghuang, Shen Dingyu und Jiang Dongxing. „Stopping powers of A1 for MeV Si ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 160, Nr. 1 (Januar 2000): 11–15. http://dx.doi.org/10.1016/s0168-583x(99)00569-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Srivastava, PC, SP Pandey, DK Avasthi und K. Asokan. „device characteristics on 100 MeV gold ions irradiation“. Vacuum 48, Nr. 12 (Dezember 1997): 965–67. http://dx.doi.org/10.1016/s0042-207x(97)00104-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Chang, S. W., J. D. Scudder, K. Kudela, H. E. Spence, J. F. Fennell, R. P. Lepping, R. P. Lin und C. T. Russell. „MeV magnetosheath ions energized at the bow shock“. Journal of Geophysical Research: Space Physics 106, A9 (01.09.2001): 19101–15. http://dx.doi.org/10.1029/2000ja003037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Mezhevych, S. Yu, A. T. Rudchik, K. Rusek, A. Budzanowski, B. Czech, J. Choiński, L. Głowacka et al. „Excitation of 14C by 45 MeV 11B ions“. Nuclear Physics A 753, Nr. 1-2 (Mai 2005): 13–28. http://dx.doi.org/10.1016/j.nuclphysa.2005.02.119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kidd, J. M., P. J. Lindstrom, H. J. Crawford und G. Woods. „Fragmentation of carbon ions at 250 MeV/nucleon“. Physical Review C 37, Nr. 6 (01.06.1988): 2613–23. http://dx.doi.org/10.1103/physrevc.37.2613.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Litherland, A. E., und M.-J. Nadeau. „Electric dissociation of negative ions at MeV energies“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 99, Nr. 1-4 (Mai 1995): 546–48. http://dx.doi.org/10.1016/0168-583x(94)00629-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Papaléo, R. M., A. Hallén, J. Eriksson, G. Brinkmalm, P. Demirev, P. Håkansson und B. U. R. Sundqvist. „Damaging of C60 films by MeV heavy ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 91, Nr. 1-4 (Juni 1994): 124–28. http://dx.doi.org/10.1016/0168-583x(94)96201-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Hari kumar, V., A. P. Pathak, S. K. Sharma, Shyam kumar, N. Nath, D. Kabiraj und D. K. Avasthi. „Energy loss of MeV heavy ions in carbon“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 108, Nr. 3 (Februar 1996): 223–26. http://dx.doi.org/10.1016/0168-583x(95)01053-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Santhana Raman, P., K. G. M. Nair, M. Kamruddin, A. K. Tyagi, A. Rath, P. V. Satyam, B. K. Panigrahi und V. Ravichandran. „MeV Au2+ ions induced surface patterning in silica“. Applied Surface Science 258, Nr. 9 (Februar 2012): 4156–60. http://dx.doi.org/10.1016/j.apsusc.2011.10.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Wong, H., E. Deng, N. W. Cheung, P. K. Chu, E. M. Strathman und M. D. Strathman. „Profile studies of MeV ions implanted into Si“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 21, Nr. 1-4 (Januar 1987): 447–51. http://dx.doi.org/10.1016/0168-583x(87)90875-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Stéphan, C., L. Tassan-Got, D. Bachelier, C. O. Bacri, R. Rimbot, B. Borderie, J. L. Boyard et al. „Peripheral collisions with 200 MeV/nucleon krypton ions“. Physics Letters B 262, Nr. 1 (Juni 1991): 6–10. http://dx.doi.org/10.1016/0370-2693(91)90634-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Schweikert, E. A., M. G. Blain, M. A. Park und E. F. Da Silveira. „Surface characterization with keV clusters and MeV ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 50, Nr. 1-4 (April 1990): 307–13. http://dx.doi.org/10.1016/0168-583x(90)90373-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Zee, R. H., und G. L. Kulcinski. „Disordering of CuPd by 14 MeV copper ions“. Journal of Nuclear Materials 141-143 (November 1986): 878–82. http://dx.doi.org/10.1016/0022-3115(86)90110-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Mannami, M., K. Kimura, M. Hasegawa, Y. Susuki, Y. Mizuno, N. Sakamoto, H. Ogawa, I. Katayama, T. Noro und H. Ikegami. „Convoy electrons produced by 50 MeV 3He2+ ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 56-57 (Mai 1991): 180–83. http://dx.doi.org/10.1016/0168-583x(91)96001-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Tomaschko, Ch, R. Kügler, M. Schurr und H. Voit. „MeV cluster ions from the Erlangen tandem accelerator“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 117, Nr. 1-2 (August 1996): 199–204. http://dx.doi.org/10.1016/0168-583x(96)00290-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Hase, Yoshihiro, Katsuya Satoh, Atsuya Chiba, Yoshimi Hirano, Shigeo Tomita, Yuichi Saito und Kazumasa Narumi. „Experimental Study on the Biological Effect of Cluster Ion Beams in Bacillus subtilis Spores“. Quantum Beam Science 3, Nr. 2 (06.05.2019): 8. http://dx.doi.org/10.3390/qubs3020008.

Der volle Inhalt der Quelle
Annotation:
Cluster ion beams have unique features in energy deposition, but their biological effects are yet to be examined. In this study, we employed bacterial spores as a model organism, established an irradiation method, and examined the lethal effect of 2 MeV C, 4 MeV C2, and 6 MeV C3 ion beams. The lethal effect per particle (per number of molecular ions) was not significantly different between cluster and monomer ion beams. The relative biological effectiveness and inactivation cross section as a function of linear energy transfer (LET) suggested that the single atoms of 2 MeV C deposited enough energy to kill the spores, and, therefore, there was no significant difference between the cluster and monomer ion beams in the cell killing effect under this experimental condition. We also considered the behavior of the atoms of cluster ions in the spores after the dissociation of cluster ions into monomer ions by losing bonding electrons through inelastic collisions with atoms on the surface. To the best of our knowledge, this is the first report to provide a basis for examining the biological effect of cluster ions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Cohen, Itamar, Yonatan Gershuni, Michal Elkind, Guy Azouz, Assaf Levanon und Ishay Pomerantz. „Optically Switchable MeV Ion/Electron Accelerator“. Applied Sciences 11, Nr. 12 (10.06.2021): 5424. http://dx.doi.org/10.3390/app11125424.

Der volle Inhalt der Quelle
Annotation:
The versatility of laser accelerators in generating particle beams of various types is often promoted as a key applicative advantage. These multiple types of particles, however, are generated on vastly different irradiation setups, so that switching from one type to another involves substantial mechanical changes. In this letter, we report on a laser-based accelerator that generates beams of either multi-MeV electrons or ions from the same thin-foil irradiation setup. Switching from generation of ions to electrons is achieved by introducing an auxiliary laser pulse, which pre-explodes the foil tens of ns before irradiation by the main pulse. We present an experimental characterization of the emitted beams in terms of energy, charge, divergence, and repeatability, and conclude with several examples of prospective applications for industry and research.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Zdorovets, M. V., A. L. Kozlovskiy, D. B. Borgekov und D. I. Shlimas. „Study of change in beryllium oxide strength properties as a result of irradiation with heavy ions“. Eurasian Journal of Physics and Functional Materials 5, Nr. 3 (22.09.2021): 192–99. http://dx.doi.org/10.32523/ejpfm.2021050304.

Der volle Inhalt der Quelle
Annotation:
The paper presents data on changes in strength properties, including data on microhardness, crack resistance, bending strength and wear of BeO ceramics as a result of irradiation with heavy accelerated ions. The following types of ions were selected as heavy ions: O2+ (28 MeV), Ar8+ (70 MeV), Kr15+ (147 MeV), Xe22+ (230 MeV). Radiation doses were 1013 -1015 ion/cm2 , which make it possible to assess the effect of both single defects arising from radiation, and cluster overlapping defective areas occurring at large radiation doses. During the studies carried out, it was found that an increase in the ion energy and, consequently, in the damaging ability and depth of the damaged area, leads to a sharp decrease in the strength mechanical characteristics of ceramics, which is due to an increase in defective areas in the material of the near-surface damaged layer. However, an increase in irradiation dose for all types of exposure results in an almost equilibrium decrease in strength characteristics and the same trend of change in strength characteristics. The obtained dependencies indicate that the proposed mechanisms responsible for changing the strength properties can, under certain assumptions, be extrapolated to various types of exposure to heavy ions in the energy range (25-250 MeV).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ikeda, Tokihiro. „Applications of Microbeams Produced by Tapered Glass Capillary Optics“. Quantum Beam Science 4, Nr. 2 (01.06.2020): 22. http://dx.doi.org/10.3390/qubs4020022.

Der volle Inhalt der Quelle
Annotation:
Production of ion microbeams using tapered glass capillary optics was introduced more than 10 years ago. This technique has drawn attention in terms of both its peculiar transmission features and application to ion beam analysis. The transmission mechanism based on a self-organized charge-up process for keV-energy ions was observed for the first time in an experiment using a multitude of nanometer-sized capillaries in a polymer foil. The same mechanism can be seen for the transmission of keV ions through a single tapered glass capillary. The transmission experiments with keV ions showed a delayed transmission, focusing effects, guiding effects, and formation of microbeams. Experiments using MeV-energy ions always aim at applications of microbeam irradiation for material analysis, surface modification, cell surgery, and so on. In this article, the applications of MeV ion microbeams, including the fabrication method of the glass capillary, are reviewed, as well as the experimental and theoretical studies for the transmission mechanisms of keV/MeV ions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Salah, Numan, S. P. Lochab, D. Kanjilal, Jyoti Mehra, P. D. Sahare, Ranju Ranjan, A. A. Rupasov und V. E. Aleynikov. „Thermoluminescence of BaSO4 : Eu irradiated with 48 MeV Li3+and 150 MeV Ag12+ions“. Journal of Physics D: Applied Physics 41, Nr. 8 (12.03.2008): 085408. http://dx.doi.org/10.1088/0022-3727/41/8/085408.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Xing-Ji, Li, Geng Hong-Bin, Lan Mu-Jie, Yang De-Zhuang, He Shi-Yu und Liu Chao-Ming. „Radiation effects on MOS and bipolar devices by 8 MeV protons, 60 MeV Br ions and 1 MeV electrons“. Chinese Physics B 19, Nr. 5 (Mai 2010): 056103. http://dx.doi.org/10.1088/1674-1056/19/5/056103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Troitskii, A. V., L. Kh Antonova, E. I. Demikhov, T. E. Demikhov und G. N. Mikhailova. „Effect of irradiation with high-energy protons and ions on the structure and properties of composite HTSC-2 tapes“. Perspektivnye Materialy 3 (2021): 5–20. http://dx.doi.org/10.30791/1028-978x-2021-3-5-20.

Der volle Inhalt der Quelle
Annotation:
The paper considers the effect of radiation defects caused by irradiation with protons (2.5 MeV), heavy ions 132Xe27+ (167, 80, 40 MeV), 86Kr17+(107 MeV), 40Ar8+(48 MeV), on the critical parameters of HTSC-2 tapes based on compounds YBa2Cu3O7 – x and GdBa2Cu3O7 – x. The results of calculations based on the model of the thermal peak of the ion track sizes are presented. The projective ranges of ions and protons in these samples are calculated. The radiation resistance of the studied samples to ion and proton radiation of the indicated energies is determined. The performed studies made it possible to detect, at low fluences of irradiation with heavy ions, an increase in the critical current (Ic), an improvement in the adhesion between the superconducting layer and the substrate, and a decrease in internal stresses in the HTSC layer. At higher values of fluences, the critical current and critical temperature decrease. It is important that the decrease in Ic begins at lower fluences than Tc.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Zhu, Yimei, H. Zhang, Z. X. Cai, R. C. Budhani, D. O. Welch und M. Suenaga. „Structural defects induced by heavy-ion irradiation in superconducting oxides“. Proceedings, annual meeting, Electron Microscopy Society of America 51 (01.08.1993): 1138–39. http://dx.doi.org/10.1017/s0424820100151520.

Der volle Inhalt der Quelle
Annotation:
We studied the the structure and properties of high Tc superconductors using heavy ions. While irradiation of YBa2Cu3O7-δ (hereafter denoted as 123) with 300 MeV Au+24 and 276 MeV Ag+21 ions produces columns of amorphous tracks along the ion trajectories, such defects are only created occasionally during irradiation with 236 MeV Cu+18, and are not induced with 182 MeV Si+13. A comprehensive electron microscopy study of defect formation in Bi2Sr2Ca2Cu3Ox, and in oxygen-reduced and ozone-treated 123, shows that the degree of radiation damage (the size and the shape of the defect) by the heavy ions depends on: (a) the rate at which ions lose their energy in the target; (b) crystallographic orientations with respect to the incident ion-beam (Fig.1); (c) thermal conductivity and chemical state (eg. oxygen concentration of 123) of the sample, and (d) the extent of pre-existing defects in the crystal. Calculation and simulation of the strain contrast surrounding the amorphous column using two-beam dynamical theory agree well with the observations and suggest that the reduced hole density observed in the crystal near the amorphous region is mainly due to lattice distortion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Tomaschko, Ch, K. H. Herrmann, J. Käshammer, R. Kügler, Ch Schoppmann und H. Voit. „Enhanced emission of secondary ions from solid surfaces bombarded with MeV polyatomic ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 132, Nr. 3 (November 1997): 371–76. http://dx.doi.org/10.1016/s0168-583x(97)00413-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

VOIT, H., E. NIESCHLER, B. NEES, R. SCHMIDT, CH SCHOPPMANN, P. BEINING und J. SCHEER. „THERMAL MODEL FOR THE DESORPTION OF (MOLECULAR) IONS INDUCED BY MeV HEAVY IONS“. Le Journal de Physique Colloques 50, Nr. C2 (Februar 1989): C2–237—C2–243. http://dx.doi.org/10.1051/jphyscol:1989238.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Fenyö, D., P. Håkansson und B. U. R. Sundqvist. „On the ejection of hydrogen ions from organic solids impacted by MeV ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 84, Nr. 1 (Januar 1994): 31–36. http://dx.doi.org/10.1016/0168-583x(94)95699-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Papaléo, R. M., P. Demirev, J. Eriksson, P. Håkansson und B. U. R. Sundqvist. „Radial velocity distributions of secondary ions ejected from PTFE by MeV atomic ions“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 107, Nr. 1-4 (Februar 1996): 308–12. http://dx.doi.org/10.1016/0168-583x(95)01147-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Chabot, M., D. Gardès, J. Kiener, S. Damache, B. Kubica, C. Deutsch, G. Maynard et al. „Charge-state distributions of chlorine ions interacting with cold gas and with fully ionized plasma“. Laser and Particle Beams 13, Nr. 2 (Juni 1995): 293–302. http://dx.doi.org/10.1017/s026303460000940x.

Der volle Inhalt der Quelle
Annotation:
Charge transfer of 4.3 MeV/u chlorine ions passing through a discharge plasma target is used as a probe to determine the plasma density and the ratio of impurities inside the plasma column. Charge-state distributions of 2 MeV/u chlorine ions passing through the plasma are then measured and compared to corresponding measurements in the cold gas. Stopping power measurements are also performed in both cases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie