Zeitschriftenartikel zum Thema „Méthode Wave Finite Element“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Méthode Wave Finite Element.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Méthode Wave Finite Element" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Ahmad, Zair Asrar Bin, Juan Miguel Vivar Perez, Christian Willberg und Ulrich Gabbert. „Lamb wave propagation using Wave Finite Element Method“. PAMM 9, Nr. 1 (Dezember 2009): 509–10. http://dx.doi.org/10.1002/pamm.200910227.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Huang, Min‐Chih. „Finite/infinite element analysis of wave diffraction“. Journal of the Chinese Institute of Engineers 8, Nr. 1 (Januar 1985): 1–6. http://dx.doi.org/10.1080/02533839.1985.9676798.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Qin, Jianmin, Bing Chen und Lin Lu. „Finite Element Based Viscous Numerical Wave Flume“. Advances in Mechanical Engineering 5 (Januar 2013): 308436. http://dx.doi.org/10.1155/2013/308436.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

KAWAHARA, M., und J. Y. CHENG. „FINITE ELEMENT METHOD FOR BOUSSINESQ WAVE ANALYSIS“. International Journal of Computational Fluid Dynamics 2, Nr. 1 (Januar 1994): 1–17. http://dx.doi.org/10.1080/10618569408904481.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sengupta, T. K., S. B. Talla und S. C. Pradhan. „Galerkin finite element methods for wave problems“. Sadhana 30, Nr. 5 (Oktober 2005): 611–23. http://dx.doi.org/10.1007/bf02703510.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Huang, Min‐Chih, John W. Leonard und Robert T. Hudspeth. „Wave Interference Effects by Finite Element Method“. Journal of Waterway, Port, Coastal, and Ocean Engineering 111, Nr. 1 (Januar 1985): 1–17. http://dx.doi.org/10.1061/(asce)0733-950x(1985)111:1(1).

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kawakami, Ichiro, Masamitsu Aizawa, Katsumi Harada und Hiroyuki Saito. „Finite Element Method for Nonlinear Wave Propagation“. Journal of the Physical Society of Japan 54, Nr. 2 (15.02.1985): 544–54. http://dx.doi.org/10.1143/jpsj.54.544.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

DI, Qing-Yun, und Miao-Yue WANG. „2d Finite Element Modeling for Radar Wave“. Chinese Journal of Geophysics 43, Nr. 1 (Januar 2000): 109–16. http://dx.doi.org/10.1002/cjg2.14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

De Rosa, S., und G. Pezzullo. „One-dimensional wave equation: Finite element eigenanalysis“. Journal of Sound and Vibration 150, Nr. 2 (Oktober 1991): 335–37. http://dx.doi.org/10.1016/0022-460x(91)90626-u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Serón, F. J., F. J. Sanz, M. Kindelán und J. I. Badal. „Finite-element method for elastic wave propagation“. Communications in Applied Numerical Methods 6, Nr. 5 (Juli 1990): 359–68. http://dx.doi.org/10.1002/cnm.1630060505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Shim, Sang Oh, Tae Hwa Jung, Sang Chul Kim und Ki Chan Kim. „Finite Element Model for Laplace Equation“. Applied Mechanics and Materials 267 (Dezember 2012): 9–12. http://dx.doi.org/10.4028/www.scientific.net/amm.267.9.

Der volle Inhalt der Quelle
Annotation:
The mild-slope equation has widely been used for calculation of shallow water wave transformation. Recently, its extended version was introduced, which is capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. Here, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of the wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize it. The computational domain is discretized with proper finite elements, while the radiation condition at infinity is treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model is verified through example analyses of two-dimensional wave reflection and transmission. Analysis is also made for the case where a solid structure is floated near the still water level.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Tao, Xingming, Lihua Fang, Luchao Lin, Ruirui Du und Yinyu Song. „Simulation of Optical Coherence Elastography in Agar Based on Finite Element Analysis“. E3S Web of Conferences 271 (2021): 04025. http://dx.doi.org/10.1051/e3sconf/202127104025.

Der volle Inhalt der Quelle
Annotation:
The finite element method is used to simulate the optical coherent elastic imaging in Agar. The shear wave velocity in Agar was measured by ARF-OCE system, and then the Agar model was established by finite element method, and then the shear wave velocity in Agar model was measured. The shear wave velocity in experiment and finite element simulation were compared and analyzed. The shear wave velocity obtained in the experiment is 2.50 m/s, and the range of shear wave velocity obtained in the finite element simulation is 2.4802m/s, and the average wave velocity is 2.5167m/s. The finite element method can express tissue elasticity directly and clearly, and it plays a great guiding role in corneal elastography.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Sheu, Tony W. H., und C. C. Fang. „Finite Element Solution for Wave Propagation in Layered Fluids“. Journal of Computational Acoustics 05, Nr. 04 (Dezember 1997): 383–402. http://dx.doi.org/10.1142/s0218396x97000228.

Der volle Inhalt der Quelle
Annotation:
A hyperbolic equation is considered for the propagation of pressure disturbance waves in layered fluids having different fluid properties. For acoustic problems of this sort, the characteristic finite element model alone does not suffice to ensure prediction of the monotonic wave profile across fluids having different properties. A flux corrected transport solution algorithm is intended for incorporation into the underlying Taylor–Galerkin finite element framework. The advantage of this finite element approach, in addition to permitting oscillation-free solutions, is that it avoids the necessity of dealing with medium discontinuity. As an analysis tool, the proposed monotonic finite element model has been intensively verified through problems which are amenable to analytic solutions. In modeling wave propagation in layered fluids, we have investigated the influence of the degree of medium change on the finite element solutions. Also, different finite element solutions are considered to show the superiority of using the flux corrected transport Taylor–Galerkin finite element model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Renno, Jamil M., und Brian R. Mace. „Vibration modelling of structural networks using a hybrid finite element/wave and finite element approach“. Wave Motion 51, Nr. 4 (Juni 2014): 566–80. http://dx.doi.org/10.1016/j.wavemoti.2013.09.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Fan, S. C., S. M. Li und G. Y. Yu. „Dynamic Fluid-Structure Interaction Analysis Using Boundary Finite Element Method–Finite Element Method“. Journal of Applied Mechanics 72, Nr. 4 (20.08.2004): 591–98. http://dx.doi.org/10.1115/1.1940664.

Der volle Inhalt der Quelle
Annotation:
In this paper, the boundary finite element method (BFEM) is applied to dynamic fluid-structure interaction problems. The BFEM is employed to model the infinite fluid medium, while the structure is modeled by the finite element method (FEM). The relationship between the fluid pressure and the fluid velocity corresponding to the scattered wave is derived from the acoustic modeling. The BFEM is suitable for both finite and infinite domains, and it has advantages over other numerical methods. The resulting system of equations is symmetric and has no singularity problems. Two numerical examples are presented to validate the accuracy and efficiency of BFEM-FEM coupling for fluid-structure interaction problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Imai, K., Y. Riho, T. Matsumoto, T. Takahashi und K. Bando. „Wave Force Analysis by the Finite Element Method“. Journal of Offshore Mechanics and Arctic Engineering 109, Nr. 4 (01.11.1987): 320–26. http://dx.doi.org/10.1115/1.3257027.

Der volle Inhalt der Quelle
Annotation:
The finite element method is applied to determine the wave forces and wave fields for various coastal and ocean structures. Wave diffraction and radiation problems are solved by the method. A special infinite element is implemented in a computer program to model an outer infinite sea area. The employed numerical examples are for a vertical breakwater, a gravity-type ocean platform and a floating rectangular caisson. All computed results are compared with ones from experiments and other numerical methods. As a result, it is concluded that the finite element method using infinite elements can give sufficient accuracy to be applicable to most practical structures in the ocean.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Igarashi, H., K. Watanabe, T. Ito, T. Fukuda und T. Honma. „A Finite-Element Analysis of Surface Wave Plasmas“. IEEE Transactions on Magnetics 40, Nr. 2 (März 2004): 605–8. http://dx.doi.org/10.1109/tmag.2004.825450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Huang, Dehua. „Finite element solution to the parabolic wave equation“. Journal of the Acoustical Society of America 84, Nr. 4 (Oktober 1988): 1405–13. http://dx.doi.org/10.1121/1.396587.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Young, Der‐Liang. „Finite element modeling of shallow water wave equations“. Journal of the Chinese Institute of Engineers 14, Nr. 2 (März 1991): 143–55. http://dx.doi.org/10.1080/02533839.1991.9677320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Tinti, Stefano, und Alessio Piatanesi. „Wave propagator in finite‐element modeling of tsunamis“. Marine Geodesy 18, Nr. 4 (Oktober 1995): 273–98. http://dx.doi.org/10.1080/15210609509379761.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kawahara, M., und A. Anjyu. „Lagrangian finite element method for solitary wave propagation“. Computational Mechanics 3, Nr. 5 (1988): 299–307. http://dx.doi.org/10.1007/bf00712144.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Bartels, Sören, Xiaobing Feng und Andreas Prohl. „Finite Element Approximations of Wave Maps into Spheres“. SIAM Journal on Numerical Analysis 46, Nr. 1 (Januar 2008): 61–87. http://dx.doi.org/10.1137/060659971.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Bouchoucha, Faker, Mohamed Najib Ichchou und Mohamed Haddar. „Diffusion matrix through stochastic wave finite element method“. Finite Elements in Analysis and Design 64 (Februar 2013): 97–107. http://dx.doi.org/10.1016/j.finel.2012.09.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Jingbo, Liu, und Liao Zhenpeng. „In-plane wave motion in finite element model“. Acta Mechanica Sinica 8, Nr. 1 (Februar 1992): 80–87. http://dx.doi.org/10.1007/bf02486919.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Givoli, Dan, und Shmuel Vigdergauz. „Finite element analysis of wave scattering from singularities“. Wave Motion 20, Nr. 2 (September 1994): 165–76. http://dx.doi.org/10.1016/0165-2125(94)90040-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Isaakidis, S. A., T. D. Xenos und J. A. Koukos. „Ionospheric radio wave propagation finite element method modeling“. Electrical Engineering (Archiv fur Elektrotechnik) 85, Nr. 5 (01.11.2003): 235–39. http://dx.doi.org/10.1007/s00202-003-0176-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

DI, Qing-Yun, Kun XU und Miao-Yue WANG. „Attenuated Radar Wave Migration with Finite Element Method“. Chinese Journal of Geophysics 43, Nr. 2 (März 2000): 285–90. http://dx.doi.org/10.1002/cjg2.36.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

DI, QINGYUN, MEIGEN ZHANG und MIAOYUE WANG. „TIME-DOMAIN FINITE-ELEMENT WAVE FORM INVERSION OF ACOUSTIC WAVE EQUATION“. Journal of Computational Acoustics 12, Nr. 03 (September 2004): 387–96. http://dx.doi.org/10.1142/s0218396x04002341.

Der volle Inhalt der Quelle
Annotation:
The paper derives the finite element equation for acoustic wave in time domain and presents a transparent-plus-attenuation boundary condition. Forward modeling demonstrates that the boundary condition absorbs boundary reflection wave very well. On these bases, we derive the equation satisfied by elements of Jacobi matrix used in the inversion of the physical property parameters of acoustic media. In fact, the equation is the same as that of forward modeling in form. Only the right force item is different. So with the same method of forward modeling, we can get the elements of Jacobi matrix. Because the elements are variable with time and the present inversion does not permit too many unknowns. We integrate the finite elements with the same physical property as one unknown structure unit (for example, a horizontal layer or an oblique layer, etc.) and inverse the physical property parameters of these unknown structure units instead all element's unknown parameters. The method greatly reduces calculation time and saves computer memory. Also, it improves the accuracy of the inversion results and improves the stability of the solving process. The inversion equations are solved with QR decomposition method. Model results prove that the full wave equation inversion method in time domain is effective.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Serra, Q., M. N. Ichchou und J. F. Deü. „Wave properties in poroelastic media using a Wave Finite Element Method“. Journal of Sound and Vibration 335 (Januar 2015): 125–46. http://dx.doi.org/10.1016/j.jsv.2014.09.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Kapuria, Santosh, und Amit Kumar. „A wave packet enriched finite element for electroelastic wave propagation problems“. International Journal of Mechanical Sciences 170 (März 2020): 105081. http://dx.doi.org/10.1016/j.ijmecsci.2019.105081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Wang, Zhao Ling, Zheng Ping Liu und Chi Zhang. „Tunnel Seismic Wave Field Simulation Using Finite Element Method“. Applied Mechanics and Materials 121-126 (Oktober 2011): 4880–84. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.4880.

Der volle Inhalt der Quelle
Annotation:
In the paper, two-dimensional Tunnel seismic Wave field is Simulated with finite element method, and the in the tunnel model with fault zone load Ricker wavelet source on the workface, compared the case of wave propagation according to wave field snapshot and time record, can intuitively, accurately reflect the characteristics of seismic wave propagation in tunnel seismic prediction with geological disasters such as the fault zone and so on.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Rao, Ling, und Hongquan Chen. „Fictitious Domain Technique for the Calculation of Time-Periodic Solutions of Scattering Problem“. Mathematical Problems in Engineering 2011 (2011): 1–12. http://dx.doi.org/10.1155/2011/503791.

Der volle Inhalt der Quelle
Annotation:
The fictitious domain technique is coupled to the improved time-explicit asymptotic method for calculating time-periodic solution of wave equation. Conventionally, the practical implementation of fictitious domain method relies on finite difference time discretizations schemes and finite element approximation. Our new method applies finite difference approximations in space instead of conventional finite element approximation. We use the Dirac delta function to transport the variational forms of the wave equations to the differential form and then solve it by finite difference schemes. Our method is relatively easier to code and requires fewer computational operations than conventional finite element method. The numerical experiments show that the new method performs as well as the method using conventional finite element approximation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Essahbi, Soufien, Emmanuel Perry‐Debain, Mohamed Haddar, Lotfi Hammami und Mabrouk Ben Tahar. „On the use of the plane wave based method for vibro‐acoustic problems“. Multidiscipline Modeling in Materials and Structures 7, Nr. 4 (15.11.2011): 356–69. http://dx.doi.org/10.1108/15736101111185261.

Der volle Inhalt der Quelle
Annotation:
PurposeThe purpose of this paper is to present the extension of plane wave based method.Design/methodology/approachThe mixed functional are discretized using enriched finite elements. The fluid is discretized by enriched acoustic element, the structure by enriched structural finite element and the interface fluid‐structure by fluid‐structure interaction element.FindingsResults obtained show the potentialities of the proposed method to solve a much larger class of wave problems in mid‐ and high‐frequency ranges.Originality/valueThe plane wave based method has previously been applied successfully to finite element and boundary element models for the Helmholtz equation and elastodynamic problems. This paper describes the extension of this method to the vibro‐acoustic problem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Dermentzoglou, Dimitrios, Myrta Castellino, Paolo De Girolamo, Maziar Partovi, Gerd-Jan Schreppers und Alessandro Antonini. „Crownwall Failure Analysis through Finite Element Method“. Journal of Marine Science and Engineering 9, Nr. 1 (31.12.2020): 35. http://dx.doi.org/10.3390/jmse9010035.

Der volle Inhalt der Quelle
Annotation:
Several failures of recurved concrete crownwalls have been observed in recent years. This work aims to get a better insight within the processes underlying the loading phase of these structures due to non-breaking wave impulsive loading conditions and to identify the dominant failure modes. The investigation is carried out through an offline one-way coupling of computational fluid dynamics (CFD) generated wave pressure time series and a time-varying structural Finite Element Analysis. The recent failure of the Civitavecchia (Italy) recurved parapet is adopted as an explanatory case study. Modal analysis aimed to identify the main modal parameters such as natural frequencies, modal masses and modal shapes is firstly performed to comprehensively describe the dynamic response of the investigated structure. Following, the CFD generated pressure field time-series is applied to linear and non-linear finite element model, the developed maximum stresses and the development of cracks are properly captured in both models. Three non-linear analyses are performed in order to investigate the performance of the crownwall concrete class. Starting with higher quality concrete class, it is decreased until the formation of cracks is reached under the action of the same regular wave condition. It is indeed shown that the concrete quality plays a dominant role for the survivability of the structure, even allowing the design of a recurved concrete parapet without reinforcing steel bars.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mukherjee, Shuvajit, S. Gopalakrishnan und Ranjan Ganguli. „Time domain spectral element-based wave finite element method for periodic structures“. Acta Mechanica 232, Nr. 6 (15.03.2021): 2269–96. http://dx.doi.org/10.1007/s00707-020-02917-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

LAGHROUCHE, OMAR, und PETER BETTESS. „SHORT WAVE MODELLING USING SPECIAL FINITE ELEMENTS“. Journal of Computational Acoustics 08, Nr. 01 (März 2000): 189–210. http://dx.doi.org/10.1142/s0218396x00000121.

Der volle Inhalt der Quelle
Annotation:
The solutions to the Helmholtz equation in the plane are approximated by systems of plane waves. The aim is to develop finite elements capable of containing many wavelengths and therefore simulating problems with large wave numbers without refining the mesh to satisfy the traditional requirement of about ten nodal points per wavelength. At each node of the meshed domain, the wave potential is written as a combination of plane waves propagating in many possible directions. The resulting element matrices contain oscillatory functions and are evaluated using high order Gauss-Legendre integration. These finite elements are used to solve wave problems such as a diffracted potential from a cylinder. Many wavelengths are contained in a single finite element and the number of parameters in the problem is greatly reduced.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Chakraborty, A., und S. Gopalakrishnan. „A Spectral Finite Element Model for Wave Propagation Analysis in Laminated Composite Plate“. Journal of Vibration and Acoustics 128, Nr. 4 (03.02.2006): 477–88. http://dx.doi.org/10.1115/1.2203338.

Der volle Inhalt der Quelle
Annotation:
A new spectral plate element (SPE) is developed to analyze wave propagation in anisotropic laminated composite media. The element is based on the first-order laminated plate theory, which takes shear deformation into consideration. The element is formulated using the recently developed methodology of spectral finite element formulation based on the solution of a polynomial eigenvalue problem. By virtue of its frequency-wave number domain formulation, single element is sufficient to model large structures, where conventional finite element method will incur heavy cost of computation. The variation of the wave numbers with frequency is shown, which illustrates the inhomogeneous nature of the wave. The element is used to demonstrate the nature of the wave propagating in laminated composite due to mechanical impact and the effect of shear deformation on the mechanical response is demonstrated. The element is also upgraded to an active spectral plate clement for modeling open and closed loop vibration control of plate structures. Further, delamination is introduced in the SPE and scattered wave is captured for both broadband and modulated pulse loading.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

石, 康康. „High Order Discontinuous Finite Element Method for Wave Equation“. Pure Mathematics 11, Nr. 04 (2021): 669–75. http://dx.doi.org/10.12677/pm.2021.114081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

KASHIYAMA, Kazuo, und Mutsuto KAWAHARA. „Boundary type finite element method for surface wave problems.“ Doboku Gakkai Ronbunshu, Nr. 363 (1985): 205–14. http://dx.doi.org/10.2208/jscej.1985.363_205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Yao, Changhui, und Lixiu Wang. „Nonconforming Finite Element Methods for Wave Propagation in Metamaterials“. Numerical Mathematics: Theory, Methods and Applications 10, Nr. 1 (Februar 2017): 145–66. http://dx.doi.org/10.4208/nmtma.2017.m1426.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this paper, nonconforming mixed finite element method is proposed to simulate the wave propagation in metamaterials. The error estimate of the semi-discrete scheme is given by convergence order O(h2), which is less than 40 percent of the computational costs comparing with the same effect by using Nédélec-Raviart element. A Crank-Nicolson full discrete scheme is also presented with O(τ2 + h2) by traditional discrete formula without using penalty method. Numerical examples of 2D TE, TM cases and a famous re-focusing phenomena are shown to verify our theories.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Karaa, Samir. „Finite Element θ-Schemes for the Acoustic Wave Equation“. Advances in Applied Mathematics and Mechanics 3, Nr. 1 (April 2011): 181–203. http://dx.doi.org/10.4208/aamm.10-m1018.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this paper, we investigate the stability and convergence of a family of implicit finite difference schemes in time and Galerkin finite element methods in space for the numerical solution of the acoustic wave equation. The schemes cover the classical explicit second-order leapfrog scheme and the fourth-order accurate scheme in time obtained by the modified equation method. We derive general stability conditions for the family of implicit schemes covering some well-known CFL conditions. Optimal error estimates are obtained. For sufficiently smooth solutions, we demonstrate that the maximal error in the L2-norm error over a finite time interval converges optimally as O(hp+1 + ∆ts), where p denotes the polynomial degree, s=2 or 4, h the mesh size, and ∆t the time step.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Soukup, Josef, František Klimenda, Jan Skočilas und Milan Žmindák. „Finite Element Modelling of Shock Wave Propagation Over Obstacles“. Manufacturing Technology 19, Nr. 3 (01.06.2019): 499–507. http://dx.doi.org/10.21062/ujep/319.2019/a/1213-2489/mt/19/3/499.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Huang, Bor-Shouh. „SH Wave Seismogram Synthesis by the Finite Element Method“. Terrestrial, Atmospheric and Oceanic Sciences 7, Nr. 3 (1996): 257. http://dx.doi.org/10.3319/tao.1996.7.3.257(t).

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

KASHIYAMA, Kazuo, und Mutsuto KAWAHARA. „Adaptive finite element method for linear water wave problems.“ Doboku Gakkai Ronbunshu, Nr. 387 (1987): 115–24. http://dx.doi.org/10.2208/jscej.1987.387_115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Bangerth, W., M. Geiger und R. Rannacher. „Adaptive Galerkin Finite Element Methods for the Wave Equation“. Computational Methods in Applied Mathematics 10, Nr. 1 (2010): 3–48. http://dx.doi.org/10.2478/cmam-2010-0001.

Der volle Inhalt der Quelle
Annotation:
AbstractThis paper gives an overview of adaptive discretization methods for linear second-order hyperbolic problems such as the acoustic or the elastic wave equation. The emphasis is on Galerkin-type methods for spatial as well as temporal discretization, which also include variants of the Crank-Nicolson and the Newmark finite difference schemes. The adaptive choice of space and time meshes follows the principle of \goaloriented" adaptivity which is based on a posteriori error estimation employing the solutions of auxiliary dual problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Elliott, Stephen J., Guangjian Ni, Brian R. Mace und Ben Lineton. „A wave finite element analysis of the passive cochlea“. Journal of the Acoustical Society of America 133, Nr. 3 (März 2013): 1535–45. http://dx.doi.org/10.1121/1.4790350.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Zhou, Boran, und Xiaoming Zhang. „Finite element analysis of lung ultrasound surface wave elastography“. Journal of the Acoustical Society of America 143, Nr. 3 (März 2018): 1803. http://dx.doi.org/10.1121/1.5035901.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Xu, B., und B. Q. Li. „FINITE ELEMENT SOLUTION OF NON-FOURIER THERMAL WAVE PROBLEMS“. Numerical Heat Transfer, Part B: Fundamentals 44, Nr. 1 (Juli 2003): 45–60. http://dx.doi.org/10.1080/713836333.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Jackson, R. W. „Full-wave, finite element analysis of irregular microstrip discontinuities“. IEEE Transactions on Microwave Theory and Techniques 37, Nr. 1 (1989): 81–89. http://dx.doi.org/10.1109/22.20023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

BANGERTH, WOLFGANG, und ROLF RANNACHER. „ADAPTIVE FINITE ELEMENT TECHNIQUES FOR THE ACOUSTIC WAVE EQUATION“. Journal of Computational Acoustics 09, Nr. 02 (Juni 2001): 575–91. http://dx.doi.org/10.1142/s0218396x01000668.

Der volle Inhalt der Quelle
Annotation:
We present an adaptive finite element method for solving the acoustic wave equation. Using a global duality argument and Galerkin orthogonality, we derive an identity for the error with respect to an arbitrary functional output of the solution. The error identity is evaluated by solving the dual problem numerically. The resulting local cell-wise error indicators are used in the grid adaptation process. In this way, the space-time mesh can be tailored for the efficient computation of the quantity of interest. We give an overview of the implementation of the proposed method and illustrate its performance by several numerical examples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie