Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Meteorology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Meteorology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Meteorology"
Lasher, Darlene. „Meteorology“. Psychological Perspectives 55, Nr. 1 (Januar 2012): 126. http://dx.doi.org/10.1080/00332925.2012.650072.
Der volle Inhalt der QuelleP., F., und R. G. „Meteorology“. Res: Anthropology and Aesthetics 23 (März 1993): 5–6. http://dx.doi.org/10.1086/resv23n1ms20166863.
Der volle Inhalt der QuelleRaja, Melita Emas Lumban, und Hadiyanto Hadiyanto. „Hubungan Karakteristik Pengguna dan Perilaku Penggunaan Portal Data BMKG dengan Tingkat Kepuasan Perolehan Data Iklim“. Jurnal Sains Komunikasi dan Pengembangan Masyarakat [JSKPM] 4, Nr. 4 (04.08.2020): 527. http://dx.doi.org/10.29244/jskpm.4.4.527-544.
Der volle Inhalt der QuelleRaja, Melita Emas Lumban, und Hadiyanto Hadiyanto. „Hubungan Karakteristik Pengguna dan Perilaku Penggunaan Portal Data BMKG dengan Tingkat Kepuasan Perolehan Data Iklim“. Jurnal Sains Komunikasi dan Pengembangan Masyarakat [JSKPM] 4, Nr. 4 (04.08.2020): 535. http://dx.doi.org/10.29244/jskpm.4.4.535-552.
Der volle Inhalt der QuelleLockwood, Mike, und Mat Owens. „Cosmic meteorology“. Astronomy & Geophysics 62, Nr. 3 (01.06.2021): 3.12–3.19. http://dx.doi.org/10.1093/astrogeo/atab065.
Der volle Inhalt der QuelleCrenner, Jim. „Hammock Meteorology“. Iowa Review 40, Nr. 1 (April 2010): 80. http://dx.doi.org/10.17077/0021-065x.6851.
Der volle Inhalt der QuelleMANNOJI, Nobutaka. „GPS Meteorology.“ Journal of the Visualization Society of Japan 16, Nr. 61 (1996): 107–11. http://dx.doi.org/10.3154/jvs.16.61_107.
Der volle Inhalt der QuelleNAITO, Isao. „GPS Meteorology“. Journal of Geography (Chigaku Zasshi) 109, Nr. 6 (2000): 964–70. http://dx.doi.org/10.5026/jgeography.109.6_964.
Der volle Inhalt der QuelleEsau, Igor, Stefania Argentini, Rajmund Przybylak, Irina Repina und Anna Sjöblom. „Svalbard Meteorology“. Advances in Meteorology 2012 (2012): 1–3. http://dx.doi.org/10.1155/2012/818473.
Der volle Inhalt der QuelleEtling, D. „Dynamic Meteorology“. Eos, Transactions American Geophysical Union 68, Nr. 46 (1987): 1595. http://dx.doi.org/10.1029/eo068i046p01595-01.
Der volle Inhalt der QuelleDissertationen zum Thema "Meteorology"
Johansson, Cecilia. „Influence of External Factors on the Turbulence Structure in the Atmospheric Boundary Layer“. Doctoral thesis, Uppsala University, Department of Earth Sciences, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3221.
Der volle Inhalt der QuelleThe theory used in today’s weather- and climate models to describe processes near the earth’s surface, i.e. transport of heat, moisture and momentum between the ground and the atmosphere, is based on the idea that only local factors are important, such as temperature and wind speed near the ground. However, from measurements made at two sites, one agricultural and one marine, it has been found that large eddies, which are related to the convective boundary layer height, influence the turbulence structure near the ground during unstable conditions more than previously realized. Especially the momentum transport is affected. The large eddies have similar size over land and over the sea, typically 1000 m. The important difference being that over land diurnal variation plays a fundamental role; over the sea such variations are typically absent.
From the marine site it has also been found that the turbulence structure of the temperature field over the Baltic Sea is very different from over land. Instead of having a height dependence as expected from theory, the temperature structure seems to be constant with height within the surface layer.
Typically, the heat flux over the sea is smaller than over land during convective conditions. This gives rise to a turbulence transport regime which is fundamentally different from that observed during daytime convective conditions over land.
Collins, Matthew. „The meteorology of Mars“. Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359043.
Der volle Inhalt der QuelleLarson, Ellis, und Nelly Åkerblom. „Spectral clustering for Meteorology“. Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297760.
Der volle Inhalt der QuelleBjörklund, Elin. „Observed Ice Supersaturated Layers over Sweden and Implications for Aviation Induced Contrails over the Baltic Sea“. Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-153694.
Der volle Inhalt der QuelleI atmosfären kan det uppkomma vertikalt utsträckta skikt som är övermättade med avseende på is; dessa lager har blivit benämnda som ice-supersaturated layers (ISSL). Om ett flygplan flyger igenom dessa ISSL luftmassor kan permanenta kondensationsstrimmor bildas.Dessa kondensationsstrimmor absorberar den långvågiga strålningen från jorden och reflekterar den inkommande kortvågiga strålningen från rymden. Den absorberande effekten är större än den reflekterande effekten, vilket bidrar till en förstärkning av växthuseffekten. Den här studien innehåller statistik för när dessa ISSL uppkommer i det Svenska luftrummet, baserat på data från ballongsonderingar som var utförda från Januari 2006 till December 2010. Resultatet från denna statistik visar att ISSL är mer vanliga i det Svenska luftrummet än förväntat. Lagren är i medeltal 42 hPa tjocka, placerade på 339 hPa höjd och förekommer i 44 % av sonderingarna.
Lindskog, Magnus. „On errors in meteorological data assimilation“. Doctoral thesis, Stockholm : Department of Meteorology, Stockholm university, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7258.
Der volle Inhalt der QuelleEngström, Malin. „En studie av Uppsala stads värmeö“. Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-203057.
Der volle Inhalt der QuelleSöder, Mats. „Growth and removal of inclusions during ladle refining“. Doctoral thesis, KTH, Materials Science and Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-45.
Der volle Inhalt der QuelleThe overall purpose of this thesis work has been to further our understanding of the growth and removal of inclusions in gas- and induction-stirred ladles. The primary focus has been on alumina inclusions.
Growth mechanisms were studied using data from fundamental mathematical models of gas- and induction-stirred ladles. The results showed the turbulence mechanism to be the most dominant in alumina inclusion growth. The dynamic growth and removal of inclusions in a gas-stirred ladle was studied using mathematical modelling. The model results showed concentration gradients of inclusions. The effect was most obvious in the steel flow past the removal sites: top slag, ladle refractory, and gas plume (bubble flotation). A new removal model was developed for large spherical caps bubbles.
In order to verify the predicted concentration gradients for the size population of inclusions, three experiments were carried out in production. The sampling equipment enabled sampling at five different positions and different locations at the same time. The results showed that concentration gradients of inclusions do exist both in induction-stirred and gas-stirred ladles. A theoretical analysis showed that the drag force on the inclusions to be the dominating force and that therefore inclusions follow the fluid flow.
The cluster behaviour of alumina inclusions were examined on steel samples taken in an industrial-scale deoxidation experiment in a ladle. The samples were examined by microscope and the results used to study cluster growth. It was found that there was rapid cluster growth due to collision during stirring and that at the end of the deoxidation experiment a majority of the small inclusions were bound in clusters. The cluster growth data determined using the microscopic results were compared with predicted cluster-growth data. A method was developed for converting the experimental data observed per unit area into data given per unit volume and vice versa. An expression for the collision diameter of the cluster was also developed. The results showed that the predicted cluster growth agreed well with the microscopic observations for the assumptions made in the growth model.
Tunved, Peter. „On the lifecycle of aerosol particles : Sources and dispersion over Scandinavia“. Doctoral thesis, Stockholm : Meteorologiska institutionen (MISU), Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-223.
Der volle Inhalt der QuelleSjöström, Stina. „Numerical exploration of radiative-dynamic interactions in cirrus“. Thesis, Uppsala University, Department of Earth Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8201.
Der volle Inhalt der QuelleAn important factor in forecast models today is cirrus clouds, but not much are known about their dynamics which makes them hard to parameterize. In this study a new theory was derived to enable a more correct way to describe the interplay between radiative heating and dynamical motions in these clouds. This hypothesis was tested by performing three dimensional simulations of cirrus clouds, using the University of Utah Large Eddy Simulator (UULES). Eleven clouds of varying initial radius and ice water mixing ratio were examined, with the aim of finding a pattern in their dynamical features. The model was set up without short wave radiation from the sun, and without any precipitation affecting the clouds, leaving only terrestrial heating and atmospheric cooling to create motions in the clouds. Two categories of initial dynamics could be seen:
• Isentropic adjustment: The isentropes within the cloud are adjusting to the environment due to rising of the cloud. Causes horizontal spreading through continuity.
• Density current: A dominating initial feature is spreading in small mixed layers at the cloud top and bottom. Caused by the density difference between the cloud and its environment.
An interesting phenomenon showing up in the simulations was mammatus clouds, which were visible in two of the cases. The only instability available to create these clouds was the radiative heating difference, which does not agree with present theories for how they form.
Two dimensionless numbers S and C were derived to describe the nature of the spreading motions and convection in the cloud. Both these numbers agreed with results.
Cirrusmoln har en viktig roll i dagens prognosmodeller, men är svåra att parametrisera på ett bra sätt eftersom man inte har tillräcklig kunskap om deras dynamik och utveckling. I denna studie togs en ny teori fram för att göra det möjligt att på ett mer korrekt sätt beskriva samspelet mellan strålningsuppvärmning och dynamiska rörelser i dessa moln. Hypotesen testades sedan genom att utföra tredimensionella simuleringar av cirrus moln med hjälp av University of Utah Large Eddy Simulator (UULES). Elva moln med varierande initiella radier och isvatteninnehåll undersöktes, med målet att finna ett mönster i dynamik och utveckling. UULES ställdes in så att miljön där molnen simulerades varken innehöll kortvågsstrålning från solen eller nederbörd. Således fanns det bara en resterande faktor för att skapa rörelser i molnen; skillnaden i den infraröda strålningsuppvärmningen mellan molntopp och molnbas. Två kategorier av initiella rörelser uppstod i molnen:
• Justering av isotroper: Molnen stiger i höjd vilket gör att isotroperna inuti dem justeras till omgivningen. Detta orsakar horisontell spridning genom kontinuitet.
• Densitets ström: Horisontell spridning av molnen koncentrerad till mixade skikt i de övre och undre delarna. Orsakas av skillnad i densitet mellan moln och omgivning.
Ett intressant fenomen som visade sig i två av simuleringarna var mammatusmoln. Den enda instabiliteten tillgänglig för att skapa dessa moln var skillnaden i strålningsuppvärmning mellan molntopp och -bas. Detta stämmer inte överrens med nuvarande teorier för hur dessa moln skapas.
Två dimensionslösa tal, S och C togs fram för att indikera vilken av de initiella rörelserna som dominerar i molnet, samt vilken typ av konvektion som dominerar. Båda dessa tal stämde väl överrens med resultat.
Webber, Chris Paul. „Linking pollution, meteorology and climate change“. Thesis, University of Reading, 2017. http://centaur.reading.ac.uk/73249/.
Der volle Inhalt der QuelleBücher zum Thema "Meteorology"
Ahrens, C. Donald. Essentials of meteorology: An invitation to the atmosphere. 4. Aufl. Belmont, CA: Thomson Brooks/Cole, 2005.
Den vollen Inhalt der Quelle findenAhrens, C. Donald. Meteorology today: An introduction to weather, climate, and the environment. 2. Aufl. St. Paul: West Pub. Co., 1985.
Den vollen Inhalt der Quelle findenDanielson, Eric William. Meteorology. 2. Aufl. Boston: McGraw-Hill, 2003.
Den vollen Inhalt der Quelle finden1946-, Levin James, und Abrams Elliot 1947-, Hrsg. Meteorology. Dubuque, IA: WCB/McGraw-Hill, 1998.
Den vollen Inhalt der Quelle findenAnthes, Richard A. Meteorology. 6. Aufl. New York: Macmillan Pub. Co., 1992.
Den vollen Inhalt der Quelle findenPanchev, S. Dynamic Meteorology. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5221-8.
Der volle Inhalt der QuelleGrefen, K., und J. Löbel, Hrsg. Environmental Meteorology. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2939-5.
Der volle Inhalt der QuelleRaghavan, S. Radar Meteorology. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0201-0.
Der volle Inhalt der QuelleRauber, Robert M., und Stephen W. Nesbitt. Radar Meteorology. Chichester, UK: John Wiley & Sons Ltd, 2018. http://dx.doi.org/10.1002/9781118432662.
Der volle Inhalt der QuelleKrishnamurti, T. N., Lydia Stefanova und Vasubandhu Misra. Tropical Meteorology. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7409-8.
Der volle Inhalt der QuelleBuchteile zum Thema "Meteorology"
Taub, Liba. „Meteorology“. In A Companion to Science, Technology, and Medicine in Ancient Greece and Rome, 232–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118373057.ch14.
Der volle Inhalt der QuelleZiv, Baruch, Elad Shilo, Yury Lechinsky und Alon Rimmer. „Meteorology“. In Lake Kinneret, 81–96. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8944-8_6.
Der volle Inhalt der QuelleWiin-Nielsen, Aksel C. „Meteorology“. In Environmental Concerns, 91–107. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-2904-6_7.
Der volle Inhalt der QuelleNagarajan, R. „Meteorology“. In Drought Assessment, 28–76. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2500-5_2.
Der volle Inhalt der QuelleŞen, Zekâi. „Meteorology“. In Earth Systems Data Processing and Visualization Using MATLAB, 7–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01542-8_2.
Der volle Inhalt der QuellePollitt, Christopher, Colin Talbot, Janice Caulfield und Amanda Smullen. „Meteorology“. In Agencies, 147–82. London: Palgrave Macmillan UK, 2005. http://dx.doi.org/10.1057/9780230504868_8.
Der volle Inhalt der QuelleHouse, David. „Meteorology“. In Seamanship Techniques, 425–75. 5th edition. | New York : Routledge, [2018]: Routledge, 2018. http://dx.doi.org/10.4324/9781315560250-12.
Der volle Inhalt der QuelleSeshadri, V. „Meteorology“. In The Inverse Gaussian Distribution, 230–31. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1456-4_16.
Der volle Inhalt der QuelleFoken, Thomas. „Applied Meteorology“. In Micrometeorology, 315–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-25440-6_8.
Der volle Inhalt der QuelleAhmad, Latief, Raihana Habib Kanth, Sabah Parvaze und Syed Sheraz Mahdi. „Synoptic Meteorology“. In Experimental Agrometeorology: A Practical Manual, 119–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69185-5_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Meteorology"
Mazurkin, Petr. „QUANTUM METEOROLOGY“. In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/5.1/s20.077.
Der volle Inhalt der QuelleSingh, Ram Chandra, und Rajeev Bhatla. „Wavelets in meteorology“. In EMERGING APPLICATIONS OF WAVELET METHODS: 7th International Congress on Industrial and Applied Mathematics - Thematic Minisymposia. AIP, 2012. http://dx.doi.org/10.1063/1.4740045.
Der volle Inhalt der QuelleHOFFMANN, GEERD-R. „GRID COMPUTING FOR METEOROLOGY“. In Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799685_0012.
Der volle Inhalt der QuelleGuzzi, Rodolfo, Antonio Navarra und Jagadish Shukla. „Meteorology and Environmental Sciences“. In Course on Physical Climatology and Meteorology for Environmental Application. WORLD SCIENTIFIC, 1990. http://dx.doi.org/10.1142/9789814539722.
Der volle Inhalt der QuellePries, Thomas H. „High-energy laser meteorology“. In OE/LASE '90, 14-19 Jan., Los Angeles, CA, herausgegeben von Peter B. Ulrich und LeRoy E. Wilson. SPIE, 1990. http://dx.doi.org/10.1117/12.18347.
Der volle Inhalt der QuelleSemenova, Nataliya V., Maksim Y. Chervyakov, Nadezhda V. Korotkova und Elena V. Demidova. „ADDITIONAL EDUCATION IN METEOROLOGY“. In Treshnikov readings – 2022 Modern geographical global picture and technology of geographic education. Ulyanovsk State Pedagogical University named after I. N. Ulyanov, 2022. http://dx.doi.org/10.33065/978-5-907216-88-4-2022-135-136.
Der volle Inhalt der QuelleBokal, Zhanna M., und Rustem B. Sinitsyn. „Random signal sodar for meteorology“. In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2009, herausgegeben von Ryszard S. Romaniuk und Krzysztof S. Kulpa. SPIE, 2009. http://dx.doi.org/10.1117/12.837997.
Der volle Inhalt der QuellePáta, Petr, Petr Janout und Martin Blažek. „New generation of meteorology cameras“. In Photonics Prague 2017, herausgegeben von Petr Páta und Karel Fliegel. SPIE, 2017. http://dx.doi.org/10.1117/12.2296846.
Der volle Inhalt der QuelleSand, Wayne, und Cleon Biter. „Meteorology surrounding the Roselawn accident“. In 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-496.
Der volle Inhalt der QuelleDinoev, Todor, Alexander Hafele, Giovanni Martucci, Valentin B. Simeonov, Bertrand Calpini, Ilya Serikov, Sergei Bobrovnikov und Daniel Leuenbergerd. „Raman lidar in operational meteorology“. In Lidar Remote Sensing for Environmental Monitoring XVI, herausgegeben von Nobuo Sugimoto und Upendra N. Singh. SPIE, 2018. http://dx.doi.org/10.1117/12.2501987.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Meteorology"
Bruggeman, David, Marjorie Stockton, Kenneth Waight, Gregory Stanton, Melissa Coronado und Jerome Quintana. Meteorology Program. Office of Scientific and Technical Information (OSTI), Mai 2022. http://dx.doi.org/10.2172/1868208.
Der volle Inhalt der QuelleHoitink, D. J. Climate and meteorology. Office of Scientific and Technical Information (OSTI), Juni 1995. http://dx.doi.org/10.2172/433025.
Der volle Inhalt der QuelleBruggeman, David Alan. LANL Meteorology Program. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1373533.
Der volle Inhalt der QuelleDewart, Jean Marie. LANL Meteorology Program. Office of Scientific and Technical Information (OSTI), Februar 2015. http://dx.doi.org/10.2172/1169672.
Der volle Inhalt der QuelleBruggeman, David, Kenneth Waight, Gregory Stanton und Melissa Coronado. LANL Meteorology Program. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1776737.
Der volle Inhalt der QuelleDewart, Jean Marie. LANL Meteorology Program FY15. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1211602.
Der volle Inhalt der QuelleBruggeman, David Alan. Meteorology Tower Site Inspections. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1467188.
Der volle Inhalt der QuelleKane, D. L. Arctic hydrology and meteorology. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/5118378.
Der volle Inhalt der QuelleKane, D. L. Arctic hydrology and meteorology. Office of Scientific and Technical Information (OSTI), Januar 1988. http://dx.doi.org/10.2172/5118405.
Der volle Inhalt der QuelleKane, D. L. Arctic hydrology and meteorology. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/5142270.
Der volle Inhalt der Quelle