Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Metamagnetický.

Zeitschriftenartikel zum Thema „Metamagnetický“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Metamagnetický" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Zyuzin, A. A., und A. Y. Zyuzin. „Spin Injection as a Source of the Metamagnetic Phase Transition“. Solid State Phenomena 168-169 (Dezember 2010): 461–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.461.

Der volle Inhalt der Quelle
Annotation:
We consider a metamagnetic phase transition of itinerant electrons in the metamagnetic- ferromagnetic metal junction. The current flow between a ferromagnetic metal and a metamagnetic metal produces the non-equilibrium spin imbalance acting as an effective magnetic field and initiating the first-order type transition from low- to high-magnetization states of the metamagnet in the vicinity of the ferromagnet. We show that the current dependence of the length of high-magnetization state region diverges at some threshold value, due to nonequilibrium shift, generated in a contact between the high and low magnetization states of the metamagnetic metal.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kainuma, Ryosuke, W. Ito, R. Y. Umetsu, V. V. Khovaylo und T. Kanomata. „Metamagnetic Shape Memory Effect and Magnetic Properties of Ni-Mn Based Heusler Alloys“. Materials Science Forum 684 (Mai 2011): 139–50. http://dx.doi.org/10.4028/www.scientific.net/msf.684.139.

Der volle Inhalt der Quelle
Annotation:
In some Ni-Mn-In- and Ni-Mn-Sn-based Heusler-type alloys, martensitic transformation from the ferromagnetic parent phase to the paramagnetic martensite phase appears and magnetic field-induced reverse transformation, namely, metamagnetic phase transition, is detected. In this paper, the metamagnetic shape memory effect due to the metamagnetic phase transition and the magnetostress effect in the Ni-Co-Mn-In alloys are introduced and the phase diagrams of Ni50Mn50-yXy (X: In, Sn, Sb) alloys are shown as basic information. Furthermore, the magnetic properties of both the parent and martensite phases in the Ni-Mn-In- and Ni-Mn-Sn-based metamagnetic shape memory alloys are also reviewed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Oomi, G., N. Matsuda, T. Kagayama, C. K. Cho und P. C. Canfield. „Electronic Properties of Magnetic Superconductor HoNi2B2C Under High Pressure“. International Journal of Modern Physics B 17, Nr. 18n20 (10.08.2003): 3664–71. http://dx.doi.org/10.1142/s0217979203021587.

Der volle Inhalt der Quelle
Annotation:
The electrical resistivity of single crystalline HoNi 2 B 2 C has been measured at high pressure and magnetic fields. The three anomalies in the magnetoresistance due to metamagnetic transitions are observed both at ambient and high pressures. It is found that the metamagnetic transition fields increase with increasing pressure. The temperature dependence of electrical resistivity is strongly dependent on magnetic field. Non Fermi liquid behavior is observed near the metamagnetic transition fields. But the normal Fermi liquid behavior recovers after completing the phase transition. The Grüneisen parameters are also calculated to examine the stability of electronic state.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

YAMADA, H. „ITINERANT ELECTRON METAMAGNETISM OF Co-COMPOUNDS“. International Journal of Modern Physics B 07, Nr. 01n03 (Januar 1993): 589–92. http://dx.doi.org/10.1142/s0217979293001232.

Der volle Inhalt der Quelle
Annotation:
On the Landau-Ginzburg theory the metamagnetic transition observed at low temperature in some Co-compounds YCo2, LuCo2, Co(S, Se)2 and others has been shown to be related with the susceptibility maximum at room temperature through a characteristic quantity given in terms of the Landau expansion coefficients of the magnetic free energy. The present theory can explain the metamagnetic behaviours observed in the d-electron system at finite temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Xi, Gayatri Venugopal, Jinwei Zeng, Yinnan Chen, Dong Ho Lee, Natalia M. Litchinitser und Alexander N. Cartwright. „Optical fiber metamagnetics“. Optics Express 19, Nr. 21 (26.09.2011): 19813. http://dx.doi.org/10.1364/oe.19.019813.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Peschke, Simon, Lisa Gamperl, Valentin Weippert und Dirk Johrendt. „Flux synthesis, crystal structures, and physical properties of new lanthanum vanadium oxyselenides“. Dalton Transactions 46, Nr. 19 (2017): 6230–43. http://dx.doi.org/10.1039/c7dt00779e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jing, C., H. L. Zhang, Z. Li, D. H. Yu, S. X. Cao und J. C. Zhang. „Martensitic Transformation and Metamagnetic Shape Memory Effect in Ni46Co4Mn37in13 Heusler Alloy“. Materials Science Forum 687 (Juni 2011): 505–9. http://dx.doi.org/10.4028/www.scientific.net/msf.687.505.

Der volle Inhalt der Quelle
Annotation:
The phase transition strain and magnetostrain during the martensitic transformation have been systematically investigated in Ni46Co4Mn37In13 Heusler alloy. A large phase transition strain with the value of about 0.25% upon martensitic transition has been observed, which is much larger than that in other metamagnetic shape memory alloys. In addition, such phase transition strain can be also obtained by the field change of about 50 kOe, exhibiting a large metamagnetic shape memory effect with nonprestrain. This behavior can be attributed to magnetoelastic coupling, which is caused by large difference in Zeeman energy between austenitic and martensitic phases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Grado-Caffaro, M. A., und M. Grado-Caffaro. „Mathematical–Physics Investigation on the Behaviour of a Metamagnetic System“. Zeitschrift für Naturforschung A 72, Nr. 5 (01.05.2017): 463–67. http://dx.doi.org/10.1515/zna-2016-0485.

Der volle Inhalt der Quelle
Annotation:
AbstractIn order to exemplify, we consider a finite itinerant-electron metamagnetic gas at sufficiently low absolute temperature so that relevant new results are obtained. In fact, we study key aspects related to derive the electronic energy of the abovementioned metamagnetic gas in relation to the Fermi levels of the spin-up and spin-down electron bands and in relation to the exchange energy and magnetic susceptibility. Within an unprecedented mathematical–physics approach, the abovementioned electronic energy is reinterpreted by defining it as an averaged quantity from the corresponding nonrelativistic, time-independent, Schrödinger equation with two-band energy-eigenvalue spectrum. In parallel, a matrix formulation is presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ye, Jingfan, Marco Hauke, Vikram Singh, Rajeev Rawat, Mukul Gupta, Akhil Tayal, S. M. Amir, Jochen Stahn und Amitesh Paul. „Magnetic properties of ordered polycrystalline FeRh thin films“. RSC Advances 7, Nr. 70 (2017): 44097–103. http://dx.doi.org/10.1039/c7ra06738k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gawai, U. P., D. K. Gaikwad, M. R. Bodke, H. A. Khawal, K. K. Pandey, A. K. Yadav, S. N. Jha, D. Bhattacharyya und B. N. Dole. „Doping effect on the local structure of metamagnetic Co doped Ni/NiO:GO core–shell nanoparticles using X-ray absorption spectroscopy and the pair distribution function“. Physical Chemistry Chemical Physics 21, Nr. 3 (2019): 1294–307. http://dx.doi.org/10.1039/c8cp05267k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yin, L. H., J. Yang, P. Tong, X. Luo, C. B. Park, K. W. Shin, W. H. Song et al. „Role of rare earth ions in the magnetic, magnetocaloric and magnetoelectric properties of RCrO3 (R = Dy, Nd, Tb, Er) crystals“. Journal of Materials Chemistry C 4, Nr. 47 (2016): 11198–204. http://dx.doi.org/10.1039/c6tc03989h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Klein, D. R., D. MacNeill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi et al. „Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling“. Science 360, Nr. 6394 (03.05.2018): 1218–22. http://dx.doi.org/10.1126/science.aar3617.

Der volle Inhalt der Quelle
Annotation:
Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field. We electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition. The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively. We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Liu, Zhong-Yi, Yan-Fei Xia, Jiao Jiao, En-Cui Yang und Xiao-Jun Zhao. „Two water-bridged cobalt(ii) chains with isomeric naphthoate spacers: from metamagnetic to single-chain magnetic behaviour“. Dalton Transactions 44, Nr. 46 (2015): 19927–34. http://dx.doi.org/10.1039/c5dt03297k.

Der volle Inhalt der Quelle
Annotation:
Two water-bridged cobalt(ii) chains with isomeric naphthoate spacers exhibit metamagnetic and SCM behaviours, arising from the dramatically different interchain stacking induced by naphthoate isomers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Cai, Wenshan, Uday K. Chettiar, Hsiao-Kuan Yuan, Vashista C. de Silva, Alexander V. Kildishev, Vladimir P. Drachev und Vladimir M. Shalaev. „Metamagnetics with rainbow colors“. Optics Express 15, Nr. 6 (2007): 3333. http://dx.doi.org/10.1364/oe.15.003333.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Werner, Julia, Zbigniew Tomkowicz, Michał Rams, Stefan G. Ebbinghaus, Tristan Neumann und Christian Näther. „Synthesis, structure and properties of [Co(NCS)2(4-(4-chlorobenzyl)pyridine)2]n, that shows slow magnetic relaxations and a metamagnetic transition“. Dalton Transactions 44, Nr. 31 (2015): 14149–58. http://dx.doi.org/10.1039/c5dt01898f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Grado-Caffaro, M. A., und M. Grado-Caffaro. „A Short Note on the Susceptibility in the Paramagnetic State for Disordered Itinerant-Electron Metamagnetic Materials“. Active and Passive Electronic Components 19, Nr. 4 (1997): 261–63. http://dx.doi.org/10.1155/1997/10953.

Der volle Inhalt der Quelle
Annotation:
A formulation for the paramagnetic susceptibility of a typical disordered itinerant-electron metamagnetic material is proposed by using a tight-binding approximation. Moreover, some considerations on the susceptibility tensor are exposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Prokeš, K., M. I. Bartashevich, T. Goto, H. Nakotte, E. G. Haanappel, A. Syshchenko, F. R. de Boer, A. Lacerda, L. C. J. Perreira und V. Sechovský. „Metamagnetic transition in U2Pd2In“. Physica B: Condensed Matter 294-295 (Januar 2001): 288–91. http://dx.doi.org/10.1016/s0921-4526(00)00661-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Satoh, K., I. Umehara, A. Fukada, Y. Kurosawa, Y. Ōnuki und K. Maezawa. „Metamagnetic behavior in CeCu2“. Journal of Magnetism and Magnetic Materials 90-91 (Dezember 1990): 141–42. http://dx.doi.org/10.1016/s0304-8853(10)80045-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Yamada, H., K. Terao, H. Ohta, T. Arioka und E. Kulatov. „Metamagnetic transition of FeSi“. Physica B: Condensed Matter 281-282 (Juni 2000): 267–68. http://dx.doi.org/10.1016/s0921-4526(99)00828-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Sugiyama, K., Y. Yoshida, D. Aoki, R. Settai, T. Takeuchi, K. Kindo und Y. Ōnuki. „Metamagnetic magnetization in DyCu2“. Physica B: Condensed Matter 230-232 (Februar 1997): 748–51. http://dx.doi.org/10.1016/s0921-4526(96)00829-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Matsuoka, Y., Y. Nishimura, S. Mitsudo, H. Nojiri, H. Komatsu, M. Motokawa, K. Kakurai, K. Nakajima, Y. Karasawa und N. Niimura. „Metamagnetic transition in Y2Cu2O5“. Journal of Magnetism and Magnetic Materials 177-181 (Januar 1998): 729–30. http://dx.doi.org/10.1016/s0304-8853(97)00395-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Saito, Hidekazu, Satoshi Suzuki, Kazuaki Fukamichi, Hiroyuki Mitamura und Tsuneaki Goto. „Metamagnetic Transition in GdSi“. Journal of the Physical Society of Japan 65, Nr. 7 (15.07.1996): 1938–40. http://dx.doi.org/10.1143/jpsj.65.1938.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Opagiste, C., M. J. Jackson, R. M. Galéra, E. Lhotel, C. Paulsen und B. Ouladdiaf. „Metamagnetic behaviour of Nd3Pt23Si11“. Journal of Magnetism and Magnetic Materials 340 (August 2013): 46–49. http://dx.doi.org/10.1016/j.jmmm.2013.03.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Yamada, H., und M. Shimizu. „Metamagnetic transition of YCo2“. Journal of Physics F: Metal Physics 15, Nr. 6 (Juni 1985): L175—L180. http://dx.doi.org/10.1088/0305-4608/15/6/007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Cuartero, V., J. Blasco, J. García, J. A. Rodríguez-Velamazán und C. Ritter. „Metamagnetic transition in Tb2MnCoO6“. EPJ Web of Conferences 40 (2013): 15002. http://dx.doi.org/10.1051/epjconf/20134015002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Hu, Jifan, Fuming Yang, Yizhong Wang, Jianli Wang und F. R. de Boer. „Metamagnetic Transition in ErMn6Sn6“. physica status solidi (b) 214, Nr. 1 (Juli 1999): 135–40. http://dx.doi.org/10.1002/(sici)1521-3951(199907)214:1<135::aid-pssb135>3.0.co;2-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Hirose, Yusuke, Fuminori Honda, Rikio Settai und Yoshichika Ōnuki. „Metamagnetic Behaviour in CeCu6“. Journal of the Physical Society of Japan 80, Suppl.A (02.01.2011): SA065. http://dx.doi.org/10.1143/jpsjs.80sa.sa065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Tsutaoka, Takanori, Toshihiko Tokunaga, Hideoki Kadomatsu, Xun Xu, Shinji Kawano, Yoshikazu Andoh, Go Nakamoto und Makio Kurisu. „Metamagnetic Transitions in Nd7Ni3“. Journal of the Physical Society of Japan 69, Nr. 6 (15.06.2000): 1850–55. http://dx.doi.org/10.1143/jpsj.69.1850.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ōnuki, Yoshichika, Katsuyoshi Ina, Munekazu Nishihara, Takemi Komatsubara, Sigeru Takayanagi, Katsuhiko Kameda und Nobuo Wada. „Metamagnetic Behavior in NdCu6“. Journal of the Physical Society of Japan 55, Nr. 6 (15.06.1986): 1818–21. http://dx.doi.org/10.1143/jpsj.55.1818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Khomchenko, V. A., I. O. Troyanchuk, A. P. Sazonov, V. V. Sikolenko, H. Szymczak und R. Szymczak. „Metamagnetic behaviour in TbCo0.5Mn0.5O3.06perovskite“. Journal of Physics: Condensed Matter 18, Nr. 42 (05.10.2006): 9541–48. http://dx.doi.org/10.1088/0953-8984/18/42/001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Bakker, K., A. de Visser, A. A. Menovsky und J. J. M. Franse. „Metamagnetic transition ofUPt3under pressure“. Physical Review B 46, Nr. 1 (01.07.1992): 544–47. http://dx.doi.org/10.1103/physrevb.46.544.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Sugiyama, K., P. Ahmet, M. Abliz, H. Azuma, T. Takeuchi, K. Kindo, H. Sugawara et al. „Metamagnetic transition in PrCu2“. Physica B: Condensed Matter 211, Nr. 1-4 (Mai 1995): 145–47. http://dx.doi.org/10.1016/0921-4526(94)00968-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Motokawa, M., K. Kita, H. Shibazaki, H. Ohta, W. J. Jang, M. Hasegawa und H. Takei. „Metamagnetic transition in Y2Cu2O5“. Physica B: Condensed Matter 211, Nr. 1-4 (Mai 1995): 165–67. http://dx.doi.org/10.1016/0921-4526(94)00975-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Zhang, Chao, Zhong-Yi Liu, Ning Liu, Hong Zhao, En-Cui Yang und Xiao-Jun Zhao. „Different magnetic responses observed in CoII4, CoII3 and CoII1-based MOFs“. Dalton Transactions 45, Nr. 29 (2016): 11864–75. http://dx.doi.org/10.1039/c6dt01587e.

Der volle Inhalt der Quelle
Annotation:
Four extended MOFs constructed from CoII4, CoII3 and CoII1 subunits were reported, exhibiting ferromagnetic ordering below 2.7 K, a non-zero paramagnetic state above 2.0 K and a field-induced metamagnetic transition, respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Sakurai, Takahiro, Ryo Saiki, Rong Jia Wei, Graham N. Newton, Takuya Shiga und Hiroki Oshio. „Oxalate-bridged heterometallic chains with monocationic dabco derivatives“. Dalton Transactions 45, Nr. 41 (2016): 16182–89. http://dx.doi.org/10.1039/c6dt02955h.

Der volle Inhalt der Quelle
Annotation:
A series of bimetallic oxalate-bridged one-dimensional chains with monocationic dabco derivatives were synthesized, and their metamagnetic behavior of ferromagnetic Cr–Co oxalate chain and a specific paraelectronic relaxation behavior were investigated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Tokunaga, M., N. Miura und Y. Moritomo. „High-field Study of Layered Manganites R1/2Sr3/2MnO4 (R = La and Nd)“. Australian Journal of Physics 52, Nr. 2 (1999): 227. http://dx.doi.org/10.1071/p98044.

Der volle Inhalt der Quelle
Annotation:
We have studied the effects of a magnetic field on the magnetism and transport properties of the layered manganites R1/2Sr3/2MnO4 (R = La and Nd) in pulsed magnetic fields up to 40 T. The R = La crystal shows metamagnetic-like transitions above 30 T, concomitantly with a colossal magnetoresistance (CMR) effect as large as [ρ(0) - ρ(H)]/ρ(H) > 103 with a field of µοH = 38 T at low temperatures. These transitions can be ascribed to the field-induced melting of the real-space ordering of the eg electrons (charge ordering). For the R = Nd crystal, a magnetic field along the c-axis enhances the two-dimensionality in the conductivity. Moreover, we observed metamagnetic-like transitions accompanied by the CMR effects at low temperatures, in spite of the absence of charge ordering.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ru, Jing, Feng Gao, Min-Xia Yao, Tao Wu und Jing-Lin Zuo. „Crystal structures and magnetic properties of chiral heterobimetallic chains based on the dicyanoruthenate building block“. Dalton Trans. 43, Nr. 48 (2014): 18047–55. http://dx.doi.org/10.1039/c4dt02518k.

Der volle Inhalt der Quelle
Annotation:
Two pairs of 1D enantiomers based on the dicyanoruthenate building block were prepared and characterized. Compounds 1-(RR) and 1-(SS) show metamagnetic behavior with a critical field of about 7.2 kOe at 1.9 K.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Zhang, Daopeng, Yongzhong Bian, Jie Qin, Ping Wang und Xia Chen. „The supramolecular interaction mediated chiral 1D cyanide-bridged metamagnet: synthesis, crystal structures and magnetic properties“. Dalton Trans. 43, Nr. 3 (2014): 945–49. http://dx.doi.org/10.1039/c3dt52996g.

Der volle Inhalt der Quelle
Annotation:
Two cyanide-bridged enantiopure one-dimensional single chain complexes have been synthesized and structurally characterized. Systematically magnetic investigations show the antiferromagnetic coupling between the Mn(iii)–Fe(iii) centers and the metamagnetic behavior at about 5.0 K.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Lapidus, Saul H., Peter W. Stephens, Maria Fumanal, Jordi Ribas-Ariño, Juan J. Novoa, Jack G. DaSilva, Arnold L. Rheingold und Joel S. Miller. „Low temperature structures and magnetic interactions in the organic-based ferromagnetic and metamagnetic polymorphs of decamethylferrocenium 7,7,8,8-tetracyano-p-quinodimethanide, [FeCp*2]˙+[TCNQ]˙−“. Dalton Transactions 50, Nr. 32 (2021): 11228–42. http://dx.doi.org/10.1039/d1dt02106k.

Der volle Inhalt der Quelle
Annotation:
To identify the genesis of the differing magnetic behaviors for the ferro- (FO) and metamagnetic (MM) polymorphs of [FeCp*2][TCNQ] the low temperature structures of each polymorph were determined from high-resolution synchrotron powder diffraction data.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Sláma, Jozef, Jozef Pal’a, Martin Šoka und Jan Lokaj. „Metamagnetism in manganate magnesium ferrite“. Journal of Electrical Engineering 70, Nr. 1 (01.02.2019): 78–81. http://dx.doi.org/10.2478/jee-2019-0012.

Der volle Inhalt der Quelle
Annotation:
Abstract The metamagnetic properties of the manganese magnesium ferrites having the general formula Mn0.7Mg0.3Fe2O4 prepared by the standard ceramic technique have been studied. It is proposed that when a change of temperature at adequate magnetic field is applied in a Mn0.7Mg0.3Fe2O4 a magnetic phase transition will be generated, giving rise to an antiferromagnetic (AFM) state from ferrimagnetic (FM) phase. The critical transition field Hac = 300 A/m was estimated for critical magnetization curve of transition from the metamagnetic behavior to FM behavior of sample. The FM to AFM transition in these ferrites is accompanied by a Néel type to Yafet-Kittel type transition and gradual spin ordering changes of the unit cell volume. The application of an external magnetic field to the low-temperatures AFM state causes the sample to reset to the original FM state.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Karpenkov, Alexey, Konstantin Skokov, Dmitriy Karpenkov, Oksana V. Balbikhina, Elena M. Semenova, Yulia V. Kuznetsova und Sergey V. Taskaev. „Microstructure Transformation under Itinerant-Electron Metamagnetic Transition in LaFe11.6Si1.4“. Materials Science Forum 845 (März 2016): 42–45. http://dx.doi.org/10.4028/www.scientific.net/msf.845.42.

Der volle Inhalt der Quelle
Annotation:
The microstructure of LaFe11.6Si1.4 compound under itinerant-electron metamagnetic transition was investigated by means of optical microscopy. It was found that the field-induced phase transition observed in LaFe11.6Si1.4 compound preceded via nucleation and growth of the ferromagnetic phase.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Grado-Caffaro, M. A., und M. Grado-Caffaro. „A Brief Study on Energy in Itinerant-Electron Metamagnetic Materials at Very Low Temperature“. Active and Passive Electronic Components 20, Nr. 2 (1997): 91–94. http://dx.doi.org/10.1155/1997/78393.

Der volle Inhalt der Quelle
Annotation:
Electronic energy is calculated explicitly for itinerant-electron metamagnetic materials at very low temperature. This calculation involves bandwidth and consequently volume, and it has been performed by means of an elliptic density of states. Moreover, total energy is considered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Liu, Jun-Liang, Guo-Zhang Huang und Ming-Liang Tong. „Field-induced dynamic magnetic behaviour of a canted weak ferromagnetic chain material“. Inorganic Chemistry Frontiers 2, Nr. 4 (2015): 403–8. http://dx.doi.org/10.1039/c5qi00004a.

Der volle Inhalt der Quelle
Annotation:
A 1-D [MnIII3O] based magnetic chain material amazingly exhibits the coexistence of spin-glass, spin-canting, and metamagnetic behaviours as well as slow relaxation of magnetization under different applied magnetic fields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Asl, Hooman Yaghoobnejad, Kartik Ghosh, Melissa P. Vidal Meza und Amitava Choudhury. „Li3Fe2(HPO3)3Cl: an electroactive iron phosphite as a new polyanionic cathode material for Li-ion battery“. Journal of Materials Chemistry A 3, Nr. 14 (2015): 7488–97. http://dx.doi.org/10.1039/c5ta00208g.

Der volle Inhalt der Quelle
Annotation:
Low melting phosphorous acid flux has been used to synthesize a novel iron-chloro-phosphite, Li3Fe2(HPO3)3Cl, which is electrochemically active and exhibits interesting metamagnetic transition.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Serikov, V. V., N. M. Kleinerman und A. V. Vershinin. „Mossbauer Study of Changes in Magnetic Structure of La(Fe0.88Al0.12-xSix)13 Compounds“. Solid State Phenomena 190 (Juni 2012): 530–33. http://dx.doi.org/10.4028/www.scientific.net/ssp.190.530.

Der volle Inhalt der Quelle
Annotation:
A first-order metamagnetic transition from antiferromagnetic to ferromagnetic state in La (Fe0.88Al0.12-xSix) compounds was investigated using Mossbauer effect. The exchange-related clusters in the ferromagnetic and antiferromagnetic state are shown to exist. The influence of Si on magnetic structure is observed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Maezawa, K., K. Sato, M. Ikka und Y. Isikawa. „Magnetic torque in metamagnetic DyNi“. Journal of Magnetism and Magnetic Materials 90-91 (Dezember 1990): 77–78. http://dx.doi.org/10.1016/s0304-8853(10)80028-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Tazuke, Yuuichi, Hideaki Suzuki und Hachidai Tanikawa. „Metamagnetic transitions in hexagonal La2Ni7“. Physica B: Condensed Matter 346-347 (April 2004): 122–26. http://dx.doi.org/10.1016/j.physb.2004.01.033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Yusuf, S. M., M. D. Mukadam, P. Raj, A. Sathyamoorthy und S. K. Malik. „Metamagnetic-like transition in UThCuGe“. Physica B: Condensed Matter 359-361 (April 2005): 1009–11. http://dx.doi.org/10.1016/j.physb.2005.01.380.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Sláma, Jozef, Paľa Jozef, Martin Šoka und Ján Lokaj. „Metamagnetic properties in Mn0.7Mg0.3Fe2O4 ferrite“. Physica B: Condensed Matter 576 (Januar 2020): 411705. http://dx.doi.org/10.1016/j.physb.2019.411705.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Krasko, Genrich L. „Metamagnetic behavior of fcc iron“. Physical Review B 36, Nr. 16 (01.12.1987): 8565–69. http://dx.doi.org/10.1103/physrevb.36.8565.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie