Auswahl der wissenschaftlichen Literatur zum Thema „Metamagnetický“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Metamagnetický" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Metamagnetický"

1

Zyuzin, A. A., und A. Y. Zyuzin. „Spin Injection as a Source of the Metamagnetic Phase Transition“. Solid State Phenomena 168-169 (Dezember 2010): 461–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.461.

Der volle Inhalt der Quelle
Annotation:
We consider a metamagnetic phase transition of itinerant electrons in the metamagnetic- ferromagnetic metal junction. The current flow between a ferromagnetic metal and a metamagnetic metal produces the non-equilibrium spin imbalance acting as an effective magnetic field and initiating the first-order type transition from low- to high-magnetization states of the metamagnet in the vicinity of the ferromagnet. We show that the current dependence of the length of high-magnetization state region diverges at some threshold value, due to nonequilibrium shift, generated in a contact between the high and low magnetization states of the metamagnetic metal.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kainuma, Ryosuke, W. Ito, R. Y. Umetsu, V. V. Khovaylo und T. Kanomata. „Metamagnetic Shape Memory Effect and Magnetic Properties of Ni-Mn Based Heusler Alloys“. Materials Science Forum 684 (Mai 2011): 139–50. http://dx.doi.org/10.4028/www.scientific.net/msf.684.139.

Der volle Inhalt der Quelle
Annotation:
In some Ni-Mn-In- and Ni-Mn-Sn-based Heusler-type alloys, martensitic transformation from the ferromagnetic parent phase to the paramagnetic martensite phase appears and magnetic field-induced reverse transformation, namely, metamagnetic phase transition, is detected. In this paper, the metamagnetic shape memory effect due to the metamagnetic phase transition and the magnetostress effect in the Ni-Co-Mn-In alloys are introduced and the phase diagrams of Ni50Mn50-yXy (X: In, Sn, Sb) alloys are shown as basic information. Furthermore, the magnetic properties of both the parent and martensite phases in the Ni-Mn-In- and Ni-Mn-Sn-based metamagnetic shape memory alloys are also reviewed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Oomi, G., N. Matsuda, T. Kagayama, C. K. Cho und P. C. Canfield. „Electronic Properties of Magnetic Superconductor HoNi2B2C Under High Pressure“. International Journal of Modern Physics B 17, Nr. 18n20 (10.08.2003): 3664–71. http://dx.doi.org/10.1142/s0217979203021587.

Der volle Inhalt der Quelle
Annotation:
The electrical resistivity of single crystalline HoNi 2 B 2 C has been measured at high pressure and magnetic fields. The three anomalies in the magnetoresistance due to metamagnetic transitions are observed both at ambient and high pressures. It is found that the metamagnetic transition fields increase with increasing pressure. The temperature dependence of electrical resistivity is strongly dependent on magnetic field. Non Fermi liquid behavior is observed near the metamagnetic transition fields. But the normal Fermi liquid behavior recovers after completing the phase transition. The Grüneisen parameters are also calculated to examine the stability of electronic state.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

YAMADA, H. „ITINERANT ELECTRON METAMAGNETISM OF Co-COMPOUNDS“. International Journal of Modern Physics B 07, Nr. 01n03 (Januar 1993): 589–92. http://dx.doi.org/10.1142/s0217979293001232.

Der volle Inhalt der Quelle
Annotation:
On the Landau-Ginzburg theory the metamagnetic transition observed at low temperature in some Co-compounds YCo2, LuCo2, Co(S, Se)2 and others has been shown to be related with the susceptibility maximum at room temperature through a characteristic quantity given in terms of the Landau expansion coefficients of the magnetic free energy. The present theory can explain the metamagnetic behaviours observed in the d-electron system at finite temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Xi, Gayatri Venugopal, Jinwei Zeng, Yinnan Chen, Dong Ho Lee, Natalia M. Litchinitser und Alexander N. Cartwright. „Optical fiber metamagnetics“. Optics Express 19, Nr. 21 (26.09.2011): 19813. http://dx.doi.org/10.1364/oe.19.019813.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Peschke, Simon, Lisa Gamperl, Valentin Weippert und Dirk Johrendt. „Flux synthesis, crystal structures, and physical properties of new lanthanum vanadium oxyselenides“. Dalton Transactions 46, Nr. 19 (2017): 6230–43. http://dx.doi.org/10.1039/c7dt00779e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jing, C., H. L. Zhang, Z. Li, D. H. Yu, S. X. Cao und J. C. Zhang. „Martensitic Transformation and Metamagnetic Shape Memory Effect in Ni46Co4Mn37in13 Heusler Alloy“. Materials Science Forum 687 (Juni 2011): 505–9. http://dx.doi.org/10.4028/www.scientific.net/msf.687.505.

Der volle Inhalt der Quelle
Annotation:
The phase transition strain and magnetostrain during the martensitic transformation have been systematically investigated in Ni46Co4Mn37In13 Heusler alloy. A large phase transition strain with the value of about 0.25% upon martensitic transition has been observed, which is much larger than that in other metamagnetic shape memory alloys. In addition, such phase transition strain can be also obtained by the field change of about 50 kOe, exhibiting a large metamagnetic shape memory effect with nonprestrain. This behavior can be attributed to magnetoelastic coupling, which is caused by large difference in Zeeman energy between austenitic and martensitic phases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Grado-Caffaro, M. A., und M. Grado-Caffaro. „Mathematical–Physics Investigation on the Behaviour of a Metamagnetic System“. Zeitschrift für Naturforschung A 72, Nr. 5 (01.05.2017): 463–67. http://dx.doi.org/10.1515/zna-2016-0485.

Der volle Inhalt der Quelle
Annotation:
AbstractIn order to exemplify, we consider a finite itinerant-electron metamagnetic gas at sufficiently low absolute temperature so that relevant new results are obtained. In fact, we study key aspects related to derive the electronic energy of the abovementioned metamagnetic gas in relation to the Fermi levels of the spin-up and spin-down electron bands and in relation to the exchange energy and magnetic susceptibility. Within an unprecedented mathematical–physics approach, the abovementioned electronic energy is reinterpreted by defining it as an averaged quantity from the corresponding nonrelativistic, time-independent, Schrödinger equation with two-band energy-eigenvalue spectrum. In parallel, a matrix formulation is presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ye, Jingfan, Marco Hauke, Vikram Singh, Rajeev Rawat, Mukul Gupta, Akhil Tayal, S. M. Amir, Jochen Stahn und Amitesh Paul. „Magnetic properties of ordered polycrystalline FeRh thin films“. RSC Advances 7, Nr. 70 (2017): 44097–103. http://dx.doi.org/10.1039/c7ra06738k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gawai, U. P., D. K. Gaikwad, M. R. Bodke, H. A. Khawal, K. K. Pandey, A. K. Yadav, S. N. Jha, D. Bhattacharyya und B. N. Dole. „Doping effect on the local structure of metamagnetic Co doped Ni/NiO:GO core–shell nanoparticles using X-ray absorption spectroscopy and the pair distribution function“. Physical Chemistry Chemical Physics 21, Nr. 3 (2019): 1294–307. http://dx.doi.org/10.1039/c8cp05267k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Metamagnetický"

1

Zadorozhnii, Oleksii. „Výměnná anizotropie v metamagnetických heterostrukturách“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443234.

Der volle Inhalt der Quelle
Annotation:
Výměnná anizotropie je zajímavý fyzikální jev vznikající na rozhraní antiferomagnetických (AF) a feromagnetických (FM) materiálů, který již je široce používán v elektronickém průmyslu a magnetickém záznamu. Přestože byl tento jev dlouhou dobu intenzivně studován, jeho přesný mechanizmus zatím nebyl uspokojivě vysvětlen. V této práci je představen přehled studií dokumentujících výměnnou anizotropii v tenkých dvojvrstvách, včetně experimentálních výsledků a teoretických modelů. Experimentální úkoly této diplomové práce zahrnovaly jak výrobu, tak měření různých modelových systémů vykazujících výměnnou anizotropii. Dvojvrstva Fe/FeRh, kde vrstva FeRh prochází fázovou přeměnou z AF fáze na FM fázi při 360 K, poskytuje možnost nastavení parametrů výměnné anizotropie. Dále byly zkoumány účinky výměnné anizotropie a tvarové anizotropie v mikrostrukturách Fe/FeRh. Konečně, přítomnost výměnné anizotropie byla zkoumána mezi FM a AF fází koexistujícími během fázové přeměny v nanodrátech FeRh. Vzorky byly vyrobeny pomocí magnetronového naprašování a elektronové litografie. Všechny prezentované systémy byly analyzovány pomocí magnetooptické Kerrovy mikroskopie. Výměnná anizotropie byla úspěšně nalezena v systému Fe/FeRh, přičemž její velikost byla téměř identická co do rozsahu i orientace s výsledky v literatuře, přestože námi vyrobená dvojvrstva měla horší kvalitu FM-AF rozhraní. Bylo také prokázáno, že v tomto systému existuje tzv. tréninkový efekt (Training effect), což je výrazným důkazem existence výměnné anizotropie. U nanodrátů bylo změřena významná výměnná anizotropie mezi koexistujícími fázemi FM a AF během fázové přeměny.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hajduček, Jan. „Zobrazování metamagnetických tenkých vrstev pomocí TEM“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443233.

Der volle Inhalt der Quelle
Annotation:
Komplexní magnetické materiály v nanoměřítku mají své nezastupitelné místo v moderních zařízeních, jako jsou digitální paměti nebo senzory. Moderní technologické procesy vyžadují porozumění a možnost kontroly moderních magnetických materiálů až na atomární úrovni. Jednou z možných cest je magnetická analýza za použití transmisní elektronové mikroskopie (TEM), která je unikátní díky možnosti zobrazování až v subatomárním měřítku. Tato práce popisuje možnosti zobrazování metamagnetických materiálů metodou TEM. Tyto materiály se vyznačují možností stabilizace více magnetických uspořádání najednou za daných vnějších podmínek. Modelovým systémem pro popis zobrazovacích možností metody TEM byly zvoleny tenké vrstvy metamagnetické slitiny FeRh. Tento materiál prochází při zahřívání fázovou přeměnou z antiferomagnetické do feromagnetické fáze. Podrobně jsou rozebrány procesy výroby vzorků, což je zásadní pro úspěšnou TEM analýzu. Pro magnetické zobrazování vzorků v TEMu je využita technika diferenciálního fázového kontrastu (DPC), umožňující přímé mapování rozložení magnetické indukce ve vzorku. Důsledně je diskutován vznik signálu v DPC, což je nezbytné pro porozumění a analýzu výsledných dat. FeRh vrstvy jsou podrobeny analýze struktury, chemického složení a především magnetických vlastností obou magnetických fází. Závěrem je představen proces přímého ohřevu metamagnetických vrstev v TEMu.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jaskowiec, Jiří. „Vliv prostorového omezení na vlastnosti metamagnetických nanostruktur“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402581.

Der volle Inhalt der Quelle
Annotation:
Silné prostorové omezení materiálů způsobuje jejich nové vlastnosti, které mohou najit uplatnění v mnoha vědeckých i technických odvětvích. Snaha zmenšit velikosti součástek, zvětšit hustotu zápisu a zefektivnit procesy je současným trendem elektronického průmyslu. V této práci je studován vliv prostorového omezení na vlastnosti metamagnetického železo-rhodia (FeRh) během fázové přeměny. FeRh je materiál vykazující fázovou přeměnu prvního druhu mezi antiferomagnetickou a feromagnetickou fází. Metodou mikroskopie magnetických sil v magnetickém poli kolmém na rovinu vzorku je zobrazeni a analyzována struktura fázových domén behem fázové přeměny. Kvantitativní analýza naměřených dat je provedena užitím výškové korelační funkce a její výsledky jsou porovnány pro různé velikosti struktur a tloušťky tenkých vrstev.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lin, Chunqing. „Crystallographic study on Ni-Mn-Sn metamagnetic shape memory alloys“. Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0359.

Der volle Inhalt der Quelle
Annotation:
En tant que nouveau matériau magnétique à mémoire de forme, les alliages basés sur le système Ni-Mn-Sn possèdent de multiples propriétés physiques telles que l'effet de mémoire de forme des alliages polycristallins, l'effet magnétocalorique géant, l'effet de magnétorésistance et l'effet de polarisation d'échange. Jusqu'à présent, la plupart des études ont été axées sur l'amélioration des multifonctionnalités de ces alliages, mais l'information fondamentale qui est fortement associée à ces propriétés n'est toujours pas claire. Ainsi, une étude approfondie sur les structures cristallines de la martensite et de l'austénite, les caractéristiques microstructurales et cristallographiques de la transformation martensitique a été menée dans le cadre du présent travail de doctorat. Il a été confirmé que l'austénite de Ni50Mn37.5Sn12.5 possède une structure cubique L21 (Fm3 ̅m, No.225). Le paramètre de réseau de l'austénite dans Ni50Mn37.5Sn12.5 est aA = 5.9813 Å. La martensite possède une structure orthorhombique (4O) à quatre couches (Pmma, No.51). Les paramètres de réseau de la martensite dans Ni50Mn38Sn12 et Ni50Mn37.5Sn12.5 sont a4O = 8.6068 Å; b4O = 5.6226 Å and c4O = 4.3728 Å, and a4O = 8.6063 Å, b4O = 5.6425 Å, and c4O = 4.3672Å, respectivement. La martensite 4O Ni-Mn-Sn présente une microstructure hiérarchiquement maclée. La martensite est organisée en larges plaques dans le grain d'austénite d'origine. Les plaques contiennent des colonies à forme irrégulière avec deux modèles caractéristiques de microstructures : le motif lamellaire classique et le motif en arête de poisson. Dans chaque colonie, il existe quatre variantes d'orientation (A, B, C et D) et elles forment trois types de macles (Type I, Type II et macles composées). Les interfaces entre les variantes correspondantes sont en coincidence avec leur plan de maclage K1. Les plans d'interface des paires de macles composées A-D et B-C peuvent avoir une ou deux orientations différentes, ce qui conduit aux deux modèles microstructuraux. Les variantes correspondantes dans les colonies voisines dans une même large plaque (colonies intra-plaques) possèdent des orientations proches et le joint de colonie est courbé, tandis que la limite de colonie inter-plaques est relativement droite. La relation d’orientation de Pitsch (Orientation Relation OR), spécifiée comme {1 0 1} A//{22 ̅1}4O and <1 0 1 ̅> A//<1 ̅2 2>4O, a été exclusivement déterminée à être une OR effective entre l'austénite cubique et la martensite modulée 4O. Sous cette OR, 24 variantes peuvent être générées dans un grain d'austénite. Ces 24 variantes sont organisées en 6 groupes et chaque groupe correspond à une colonie de martensite. La structure de martensite finement maclée (microstructure sandwich) est le composant microstructural de base produit par la transformation martensitique. Une telle structure assure une interface de phase invariante (plan d'habitat) pour la transformation. Au cours de la transformation, les variantes de la martensite sont organisées en clusters en forme de diamant composés de colonies de variantes et avec des structures en forme de coin au front de transformation. Chaque coin est composé de deux structures sandwich séparées par un plan de nervure médiane {1 0 1}A. Les paires de variantes dans chaque coin devraient avoir le même type de macles avec une relation de Type I ou de Type II pour garantir de bonnes compatibilités géométriques des variantes à l'interface de phase et au plan de la nervure centrale. Dans les diamants, les colonies sont séparées par des frontières présentant des marches à faible énergie interfaciale qui évoluent vers les joints des colonies intra-plaques et par des joints droits qui deviennent les joints entre les plaques. Les diamants s'allongent le long de la direction presque parallèle aux plans de la nervure centrale des coins et la forme de la plaque de la martensite est finalement formée. [...]
Being a novel magnetic shape memory material, Ni-Mn-Sn based alloy systems possess multiple physical properties, such as shape memory effect of polycrystalline alloys, giant magnetocaloric effect, large magnetoresistance effect and exchange bias effect. So far, most studies have been focused on the improvement of the multifunctionalities of these alloys, but the fundamental information which is highly associated with these properties is still unclear. Thus, a thorough study on the crystal structures of martensite and austenite, microstructural and crystallographic features of martensitic transformation has been conducted in the present PhD work. The austenite of Ni50Mn37.5Sn12.5 was confirmed to possess a L21 cubic structure (Fm"3" ̅m, No.225). The lattice parameter of austenite in Ni50Mn37.5Sn12.5 is aA=5.9813 Å. The martensite possesses a four-layered orthorhombic (4O) structure (Pmma, No.51). The lattice parameters of martensite in Ni50Mn38Sn12 and Ni50Mn37.5Sn12.5 are a4O = 8.6068 Å; b4O = 5.6226 Å and c4O = 4.3728 Å, and a4O = 8.6063 Å, b4O = 5.6425 Å, and c4O = 4.3672Å, respectively. The 4O Ni-Mn-Sn martensite exhibits a hierarchically twinned microstructure. The martensite is organized into broad plates in the original austenite grain. The plates contain irregularly shaped colonies with two characteristic microstructural patterns: classical lamellar pattern and herring-bone pattern. In each colony, there are four orientation variants (A, B, C and D) and they form three types of twins (Type I, Type II and compound twin). The interfaces between the corresponding variants are in coincidence with their twinning plane K1. The interface planes of the compound twin pairs A-D and B-C can have one or two different orientations, which leads to the two microstructural patterns. The corresponding variants in the neighboring colonies within one broad plate (intra plate colonies) possess close orientations and colony boundary is curved, whereas the inter plate colony boundary is relatively straight. The Pitsch OR, specified as "{1 0 1}" A//"{2 " "2" ̅" " "1" ̅"}" 4O and "<1 0 " "1" ̅">" A//"<" "1" ̅" " "2" ̅" 2>" 4O, was uniquely determined to be an effective OR between the cubic austenite and 4O modulated martensite. Under this OR, 24 variants can be generated within one austenite grain. Such 24 variants are organized into 6 groups and each group corresponds to a martensite colony. The finely twinned martensite structure (sandwich microstructure) is the basic microstructural constitute produced by martensitic transformation. Such a structure ensures an invariant phase interface (habit plane) for the transformation. During the transformation, martensite variants are organized into diamond shaped clusters composed of variant colonies and with wedge shaped structures at the transformation front. Each wedge is composed of two sandwich structures separating by a midrib plane {1 0 1}A. The variant pairs in each wedge should have the same twin type with either Type I or Type II relation to ensure good geometrical compatibilities of the variants at phase interface and at the midrib plane. Within the diamonds, colonies are separated by step-like boundaries with low interfacial energy that evolve into the intra plate colony boundaries and by straight boundaries that become the inter plate colony boundaries. The diamonds elongates along the direction nearly paralleled to the midrib planes of the wedges and plate shape of martensite is finally formed. Such features of the diamond structure in Ni-Mn-Sn alloys are realized by self-accommodation of transformation strains for energy minimization. The present work provides comprehensive microstructural and crystallographic information on martensite and on martensitic transforamtion of Ni-Mn-Sn alloys and it is useful for understanding their multi functionalities associated with martensitic transformation and helpful on property optimization
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kitagawa, Kentaro. „Itinerant metamagnetism and metamagnetic quantum criticality in Sr3Ru2O7 revealed by 17O-NMR“. 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136747.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bautista, Anthony. „TUNNELING SPECTROSCOPY STUDY OF CALCIUM RUTHENATE“. UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/784.

Der volle Inhalt der Quelle
Annotation:
The ruthenates are perhaps one of the most diverse group of materials known up to date. These compounds exhibit a wide array of behaviors ranging from the exotic pwave superconductivity in Sr2RuO4, to the itinerant ferromagnetism in SrRuO3, and the Mott-insulating behavior in Ca2RuO4. One of the most intriguing compounds belonging to this group is Ca3Ru2O7 which is known to undergo an antiferromagnetic ordering at 56K and an insulating transition at 48K. Most intriguing, however, is the behavior displayed by this compound in the presence of an external magnetic field. For fields parallel to the a-axis, the compound undergoes a metamagnetic transition into the ferromagnetic region at 6 T. If the external field direction is changed to the b-axis then the result will be different. colossal magnetoresistance occurs and a fall in reistivity of up to three orders of magnitude is recorded at fields of 15T. Most interesting, however, is the energy gap observed for this material. A number of groups have measured such gap with different methods and found conflicting results. For this reason it was of vital importance to perform measurements on this compound and try to resolve this issue. Tunneling spectroscopy is one of the most powerful techniques which can be used to probe the electronic properties of a material. The method is best suited to measure the density of states of a material and hence the nature of the strong correlations which dictate the properties of the compound. We performed a series of tunneling spectroscopy measurements by means of planar tunnel junctions. These types of junctions were chosen because of their stability over a large temperature range and their stability in the presence of an external field. The anisotropies which showed up in the resistivity and magnetization measurements manifested also in our data. For tunneling parallel to the a-axis, we observed a gap opening at 48K with a width a peak to peak width of 2Δa ~258±15meV. As the temperature was lowered, the gap size increased reaching a maximum width of 2Δa ~ 845±38meVat 4.2K. Tunneling parallel to the b-axis, the gap has a much smaller size than the a-axis gap. At 48K the gap width is about 2Δb ~ 201±13 meV and reaches a maximum width of 2Δb ~ 366±33 meV at 4.2K. For the c-axis, the situation is different since the gap opens at 56K instead of 48K. The gap width at 56K is about 2Δc ~ 102±6meV and reaches a maximum width of 2Δc ~ 179±14 meV at 4.2K. In the presence of an external field, we noticed that the overall behavior was always the same in the ab-plane but differed in c-axis direction. In our experiment, an external field was applied along the a-axis and measurements were made at 4.2K. For aaxis tunneling, the gap width decreased to a value of 2Δa ~ 587±27 meV at 4.2 K at 7T. On the other hand, the gap width in the b-axis direction decreased to a value of 2Δb ~ 308±25 meV for the same field. For the c-axis direction, the gap decreased to a value of 2Δc ~ 112±8 meV at 7T. The DOS of the c-axis differs for fields of 6T and above. A third peak emerges inside the gap on the valence side of the DOS. This third peak seems to be a direct consequence of the metamagnetic transition at 6T observed by other groups and may be attributable to a spin-filtering effect.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Turabi, Ali S. „EFFECTS OF MAGNETIC FIELD ON THE SHAPE MEMORY BEHAVIOR OF SINGLE AND POLYCRYSTALLINE MAGNETIC SHAPE MEMORY ALLOYS“. UKnowledge, 2015. http://uknowledge.uky.edu/me_etds/58.

Der volle Inhalt der Quelle
Annotation:
Magnetic Shape Memory Alloys (MSMAs) have the unique ability to change their shape within a magnetic field, or in the presence of stress and a change in temperature. MSMAs have been widely investigated in the past decade due to their ability to demonstrate large magnetic field induced strain and higher frequency response than conventional shape memory alloys (SMAs). NiMn-based alloys are the workhorse of metamagnetic shape memory alloys since they are able to exhibit magnetic field induced phase transformation. In these alloys, martensite and austenite phases have different magnetization behavior, such as the parent phase can be ferromagnetic and martensite phase can be weakly magnetic. The magnetization difference between the transforming phases creates Zeeman energy, which is the main source for magnetic field induced phase transformation, is unlimited with applied field and orientation independent. Thus, metamagnetic shape memory alloys can be employed in polycrystalline form and provide higher actuation stress than conventional MSMAs. High actuation stress levels and frequencies in metamagnetic shape memory alloys are promising for magnetic actuation applications. Effects of heat treatments and cooling rates on the transformation temperatures, magnetization response and shape memory behavior under compressive stress were explored in Ni45Mn36.5Co5In13.5 [100] oriented single crystalline alloys to obtain high transformation temperatures, large magnetization difference, and low hysteresis behavior. It was found that transformation temperatures increase with higher heat treatment temperatures and decrease drastically at lower cooling rates. Temperature hysteresis decreased with increasing heat treatment temperatures. It was revealed that transformation temperatures, hysteresis, and magnetization response can be tailored by heat treatments via modifying interatomic order. Magnetic and mechanical results of NiMn-based metamagnetic alloys in single and polycrystalline forms as functions of composition, stress, temperature and magnetic field (up to 9 Tesla) were revealed through thermal-cycling under stress and magnetic field; stress-cycling as functions of temperature and magnetic field; and magnetic-field-cycling under stress at several temperatures experiments. Single crystalline samples of NiMnCoIn showed recoverable strain of 1.5 % due to magnetic field induced reversible phase transformation under constant stress and strain of 3.7 % by magnetic field induced recovery after variant reorientation of martensite. The magnetic field effect on the superelasticity and shape memory effects were also explored in selected orientations of [100], [110] and [111]. Fe-based ferromagnetic shape memory alloys have received considerable attention due to their better workability, strength, and lower cost compared with commercial NiTi based SMAs. The shape memory properties of a ferrous single crystalline alloy, FeNiCoAlNb, were investigated along the [100] orientation by thermal cycling under constant stress and superelasticity tests in both tension and compression. Aging was used to form nano-size precipitates to demonstrate shape memory behavior and tailor the shape memory properties. It was found that after proper heat treatments, [001] oriented FeNiCoAlNb showed a compressive strain of 15%, low temperature dependent superelastic behavior, high compression-tension asymmetry, and high compressive strength (~3GPa). The orientation dependence of the mechanical properties of FeNiCoAlNb single crystals were investigated along the [100], [110], [012] and [113] orientations. In addition, martensite phase showed higher magnetization than austenite phase as opposed to NiMn-based metamagnetic shape memory alloys. This magnetization difference is promising because it can allow magnetic field induced forward transformation. Ferrous alloys have great potential for high strength, temperature independent, and large scale actuator applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cherifi, Ryan. „Experimental design of a strong Magneto-Electric coupling system between a ferroelectric and a magnetic phase transition alloy : BaTiO3/FeRh, and theoretical study of the metamagnetic transition of FeRh“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066309.

Der volle Inhalt der Quelle
Annotation:
Aujourd'hui, la puissance de calcul des processeurs et la capacité de stockage des disques durs tels que conçus dans l'électronique moderne sont limités par la limite thermodynamique aux systèmes finis. Pour garder une vitesse de développement tel que prédit par la loi de Moore, il est donc nécessaire de considérer de nouveaux types d’architecture d’unité de calcul et stockage d’information. Un autre problème réside dans la gestion des pertes de courant par effet Joule, qui deviennent critiques dès lors que l’on atteint de très fortes densités de transistors et bits magnétiques. Notre étude s’inscrit dans ces problématiques, par la conception de nouveaux systèmes à fort couplage magnéto-électrique qui permettrait de contrôler l’information magnétique par l’injection de faibles courants électriques. Notre objectif a été de concevoir un système à fort couplage magnéto-électrique. Il existe des matériaux possédant un couplage entre ordre magnétique et ordre ferroélectrique de façon intrinsèque. Ce type de structures représente une bonne base d’analyse conceptuelle sur la nature d’hybridation des ordres férroiques. Cependant le couplage y est généralement faible, et ne permet pas l’intégration de ces matériaux dans l’électronique moderne.Une autre option consiste à artificiellement générer un couplage magnéto-électrique à travers l’interface entre deux matériaux possédant chacun un des ordres férroiques. Nous avons travaillé essentiellement sur ce type d’hétérostructure binaire, alliant un substrat ferroélectrique type, (BaTiO3) avec, dans un premier temps, un film ultra-mince ferromagnétique type (Fe, Co, FeNi). Nous avons montré la présence d’une signature d’un couplage magnéto-électrique faible à l’interface de ces systèmes. Nous avons ensuite proposé de remplacer le matériau ferromagnétique typique par un film mince de FeRh, un alliage qui possède une transition de phase magnétique d’antiferromagnétique à ferromagnétique juste au-dessus de la température ambiante, qui dépend à la fois de la température, de la pression et du champ magnétique.Nous avons alors réalisé une étude de croissance de FeRh en films ultra-minces. Nous avons pu montrer que l’alliage garde une température de transition bulk et une transition assez abrupte jusqu’à 5nm d’épaisseur. Nous avons ensuite étudié le couplage magnéto-électrique dans le système FeRh(22nm)/BaTiO3 par magnétométrie SQUID sous champ électrique. Nous avons démontré un très fort effet magnéto-électrique induit par contrainte mécanique, possédant une constante de couplage record, α = 1.6 x 10-5 s.m-1, un ordre de grandeur au-dessus des valeurs rapportées dans la littérature.Utilisant notre connaissance du système, nous avons montré l’intérêt conceptuel d’utiliser un matériau à transition de phase dans les architectures novatrices de mémoire, en proposant une description mathématique d’un comportement memristif dans le système FeRh/piézoélectrique.Finalement, l’utilisation pratique de FeRh nous a amené à étudier l’alliage par calculs Ab Initio sous contrainte mécanique et sous injection de charges, pour comprendre plus fondamentalement la nature et les mécanismes de la transition
One of the most practical concept used in physics and engineering is the concept of triggeror switch, consisting of a means to start a controlled chain of energy transformation.A switch can lead to reversible or irreversible consequences. Technological developmentusually seeks to make use of the former because it allows for repetitive logical tasks. Suchtriggers exist via the coupling between two or more types of energetic transformations.It is formally described by the interaction between two or more distinct fields and theirexpression on a system. Amongst the most studied coupling in material physics, we findelectro-mechanical couplings such as piezoelectricity or ferroelectricity, electro-caloric ormagneto-caloric couplings such as pyroelectricity and pyro-magnetism, magneto-electric,etc. The fundamental and experimental domestication and understanding of these couplingsis usually followed (and very often motivated) by the design of practical applicationin electronics engineering technology
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Robert, Anthony. „Étude du couplage magnétique dans des nanoparticules bimétalliques de FeRh et de CoTb“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1309/document.

Der volle Inhalt der Quelle
Annotation:
L'enregistrement magnétique sur disque dur est aujourd'hui le moyen le plus fiable pour stocker l'information. L'enregistrement perpendiculaire magnétique a permis de multiplier par dix la densité de stockage par rapport à l'enregistrement longitudinal. Mais cette diminution de la taille des bits d'information se heurte à une limite physique, dite « limite superparamagnétique », qui correspond à une instabilité thermique de l'aimantation. Afin de repousser cette limite, il convient donc de fabriquer des bits avec une forte anisotropie. Mais plus les grains ont une grande anisotropie magnétique plus le champ nécessaire pour l'écriture doit être important. L'intérêt d'avoir un matériau aux propriétés magnétiques ajustables prend ainsi tout son sens. En utilisant des matériaux aux énergies d'anisotropies facilement modifiables, il n'est donc pas nécessaire de faire évoluer les têtes d'écriture. C'est dans cette optique que nous avons choisi d'étudier deux systèmes bimétalliques. Le premier est un alliage entre un métal de transition (Co) et une terre-rare lourde (Tb). Le deuxième système combine un métal de transition (Fe) et un métal magnétiquement polarisable (Rh). Dans ce travail, nous présenterons les résultats obtenus sur des nanoparticules de Co80Tb20 et de Fe50Rh50 de moins de 10 nm de diamètre, préparées par MS-LECBD (« Mass Selected Low Energy Cluster Beam Deposition »). Les échantillons, sous forme de multicouches, sont obtenus par dépôts séquentiels d'agrégats et de _lm de carbone. Dans un premier temps, une caractérisation structurale (dispersion de taille, morphologie, composition, structure cristallographique) par microscopie électronique a été réalisé pour les deux systèmes. Dans un second temps, nous avons étudié les propriétés magnétiques de ces agrégats par magnétométrie SQUID et dichroïsme magnétique circulaire (x-ray magnetic circular dichroism (XMCD)). Nous verrons, dans le cas du CoTb, que la réduction de taille entraine de profonds changements de ses propriétés par rapport au massif, notamment au niveau du couplage entre les sous-réseaux magnétiques de Co et de Tb. Dans le cas du FeRh, après avoir montré qu'un traitement thermique permet d'obtenir des agrégats chimiquement ordonnées B2, nous verrons l'influence des effets de taille sur la transition métamagnétique caractérisant cet alliage
The magnetic data storage is the most reliable way to store information. The perpendicular recording multiplied the storage density by ten with respect to the longitudinal recording. However, this reduction in the size of the information bits comes up against a physical limit, called the "superparamagnetic limit", which corresponds to a thermal instability of the magnetization. In order to push back this limit, it is therefore necessary to manufacture bits with strong anisotropy. But the more the grains have a large magnetic anisotropy the greater the field needed for writing must be. Thus, it's a great advantage of having a material with adjustable magnetic properties. By using materials with easily modifiable anisotropy energies, it is therefore not necessary to change the writing heads. It is with this in mind that we have chosen to study two bimetallic systems. The first is an alloy between a transition metal (Co) and a heavy earth-rare (Tb). The second system combines a transition metal (Fe) and a magnetically polarizable metal (Rh). In this work, we present results obtained on nanoparticles of Co80Tb20 and Fe50Rh50 of less than 10 nm in diameter, prepared by MS LECBD ("Mass Selected Low Energy Cluster Beam Deposition"). The samples, in the form of multilayers, are obtained by sequential deposition of nanoparticles and carbon _lm. First, a structural characterization (size dispersion, morphology, composition, crystallographic structure) by electron microscopy was carried out for both systems. Secondly, we have studied the magnetic properties of these nanoparticles by SQUID magnetometry and magnetic circular dichroism (XMCD). We will see, in the case of CoTb that the reduction in size leads to profound changes in its properties with respect to the massif, especially in the coupling between the magnetic sub-lattices of Co and Tb. In the case of FeRh, after having shown that a heat treatment makes it possible to obtain chemically ordered nanoparticles B2, we will see the influence of the size effects on the metamagnetic transition characterizing this alloy
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Diop, Léopold Vincent Birane. „Structure et propriétés physiques de composés magnétiques de type RT12B6 et (Hf,Ta)Fe2 et leur dépendance en fonction de la pression (physique ou chimique) (R=élément de terre rare et T=élément de transition 3d)“. Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY011/document.

Der volle Inhalt der Quelle
Annotation:
Notre étude à caractère pluridisciplinaire comprend l'élaboration de composés intermétalliques ainsi que la caractérisation de leurs propriétés tant structurales que magnétiques. Nos travaux ont porté sur des borures RT12B6 où R est un élément de terre rare ou l'yttrium et T un métal de transition 3d ainsi que des phases de Laves (Hf,Ta)Fe2. Pour appréhender les propriétés physiques de ces composés, nous avons mis en œuvre diverses variables externes (température, champ magnétique, pression) mais aussi internes telle que la pression chimique liée à la substitution d'un élément par un autre. Nous apportons une contribution à l'étude des propriétés magnétiques des composés RCo12B6. Les propriétés magnétiques de ces composés sont caractérisées à la fois par une température d'ordre qui varie peu avec l'élément de terre rare R et un moment magnétique de Co remarquablement faible. Nous montrons que les interactions d'échange R-Co sont de plus d'un ordre de grandeur plus faibles que les interactions Co-Co existant dans ces composés. La substitution du fer au cobalt dans les composés RCo12B6 est possible et donne lieu à une localisation préférentielle. Grâce à la spectroscopie Mössbauer et à la diffraction neutronique, nous avons démontré l'extrême sensibilité de l'orientation des moments magnétiques à la substitution Fe/Co. Le composé LaFe12B6 présente des propriétés magnétiques remarquables avec un état fondamental antiferromagnétique (AFM) et une transition vers un état ferromagnétique (FM) qui peut être induite par le champ appliqué ou par la température. A basse température la transition métamagnétique AFM-FM est accompagnée d'une hystérésis très large et est caractérisée par des sauts spectaculaires comme l'illustre nos mesures magnétiques, de magnétostriction ou de transport. La transition métamagnétique s'avère également fort sensible à la pression appliquée. Le composé intermétallique LaFe12B6 est caractérisé par une forte expansion thermique linéaire, un large effet magnétovolumique et présente à la fois des effets magnétocaloriques inverse et normal. L'effet de la substitution du cobalt ou du manganèse au fer ou du cérium au lanthane sur les propriétés structurales et magnétiques a été étudié de façon détaillée. La substitution Co/Fe ou Mn/Fe entraine dans les deux cas une forte augmentation du champ critique de la transition métamagnétique. Inversement la substitution Ce/La, quant à elle, réduit fortement le champ de transition. L'étude de l'alliage amorphe LaFe12B6, préparé par hypertrempe, montre des propriétés magnétiques radicalement différentes puisque la phase amorphe devient alors ferromagnétique avec une haute température de Curie. Enfin nous avons étudié les propriétés magnétiques intrinsèques du système intermétallique Hf1-xTaxFe2 pour lequel la solution solide est complète. L'analyse de l'ensemble des mesures a mis en lumière des comportements originaux du magnétisme du fer et ceci tant dans l'état ordonné que dans l'état paramagnétique. Le caractère inhabituel du magnétisme de ces composés est attribué au comportement d'électrons itinérants, lequel est à l'origine de la transition métamagnétique entre l'état AFM et l'état FM
Our multidisciplinary study includes the synthesis of intermetallic compounds and the characterization of their structural and magnetic properties. Our work has focused on RT12B6 borides where R is a rare earth element or yttrium and T a 3d transition metal as well as (Hf, Ta)Fe2 Laves phases. In order to understand the physical properties of these compounds, we have implemented various external variables (temperature, magnetic field, pressure) as well as internal variables such as the chemical pressure due to the substitution of one element with another. Through this experimental work, we investigated the magnetic properties of RCo12B6 compounds. The magnetic properties of these compounds present both an ordering temperature which is quasi independent of the rare earth element R and a remarkably small magnetic moment of Co. We show that the R-Co exchange interactions are more than an order of magnitude smaller that the Co-Co occurring in these compounds. We demonstrated that the iron for cobalt substitution in RCo12B6 compounds gives rise to a preferential substitution scheme. Combining Mössbauer spectroscopy and neutron diffraction, we have found that the magnetic ordering direction is extremely sensitive to Fe/Co substitution. LaFe12B6 compound presents remarkable magnetic properties with an antiferromagnetic (AFM) ground state but it can be transformed into a ferromagnetic (FM) state by the applied magnetic field or by the temperature. At low temperature, the field-induced AFM-FM metamagnetic transition has a large hysteresis and exhibits ultra sharp jumps as shown in our magnetic, magnetostriction and transport measurements. The metamagnetic transition is also very sensitive to the applied pressure. LaFe12B6 intermetallic compound shows a large linear thermal expansion, a huge volume magnetostriction and both normal and inverse magnetocaloric effects. The effect of cobalt or manganese for iron substitution or cerium for lanthanum substitution on the structural and magnetic properties was deeply investigated. Co/Fe or Mn/Fe substitution in both cases leads to a strong increase of the critical field of the metamagnetic transition. However Ce/La substitution reduces strongly the transition field. The investigation of LaFe12B6 amorphous alloy, prepared by melt spinning, shows radically different magnetic properties since the amorphous phase becomes ferromagnetic with a high Curie temperature. Finally we studied the intrinsic magnetic properties of the Hf1-xTaxFe2 system for which the solid solution is complete. The analysis of all the measurements highlighted original behaviours of the iron magnetism and this both in the ordered state and in the paramagnetic state. These remarkable properties are attributed to the itinerant character of the Fe 3d band magnetism, which gives rise to the metamagnetic transition between the AFM and FM states
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Metamagnetický"

1

Detlefs, Carsten, F. Bourdarot, P. Burlet, S. L. Bud’ko und P. C. Canfield. „Metamagnetic Structures of HoNi2B2C“. In Rare Earth Transition Metal Borocarbides (Nitrides): Superconducting, Magnetic and Normal State Properties, 155–62. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0763-4_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Schofield, A. J., A. J. Millis, S. A. Grigera und G. G. Lonzarich. „Metamagnetic Quantum Criticality in Sr3Ru2O7“. In Ruthenate and Rutheno-Cuprate Materials, 271–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45814-x_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zvezdin, A. K., I. A. Lubashevsky, R. Z. Levitin, G. M. Musaev, V. V. Platonov und O. M. Tatsenko. „Spin—Flop and Metamagnetic Transitions in Itinerant Ferrimagnets“. In Itinerant Electron Magnetism: Fluctuation Effects, 285–302. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5080-4_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Capogna, L., E. M. Forgan, S. M. Hayden, G. J. McIntyre, A. Wildes, A. P. Mackenzie, J. A. Duffy, R. S. Perry, S. Ikeda und Y. Maeno. „Metamagnetic Transition and Low-Energy Spin Density Fluctuations in Sr3Ru2O7“. In Ruthenate and Rutheno-Cuprate Materials, 290–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45814-x_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ustinov, V. V., L. N. Romashev, M. A. Milyaev, T. P. Krinitsina und A. M. Burkhanov. „Metamagnetic Transitions and Stepwise GMR in Uniaxial Fe/Cr Superlattices“. In Advances in Science and Technology, 104–9. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-08-7.104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Czaja, P., R. Chulist, M. Szlezynger, M. Fitta und W. Maziarz. „Multiphase Microstructure and Extended Martensitic Phase Transformation in Directionally Solidified and Heat Treated Ni44Co6Mn39Sn11 Metamagnetic Shape Memory Alloy“. In Proceedings of the International Conference on Martensitic Transformations: Chicago, 263–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76968-4_41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sato, H. „Giant Magnetoresistance: Metamagnetic Transitions in Metallic Antiferromagnets“. In Reference Module in Materials Science and Materials Engineering. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-803581-8.02793-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kihara, Takumi, Xiao Xu, Wataru Ito, Ryosuke Kainuma, Yoshiya Adachi, Takeshi Kanomata und Masashi Tokunaga. „Magnetocaloric Effects in Metamagnetic Shape Memory Alloys“. In Shape Memory Alloys - Fundamentals and Applications. InTech, 2017. http://dx.doi.org/10.5772/intechopen.69116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sato, H. „Giant Magnetoresistance: Metamagnetic Transitions in Metallic Antiferromagnets“. In Encyclopedia of Materials: Science and Technology, 3532–35. Elsevier, 2001. http://dx.doi.org/10.1016/b0-08-043152-6/00628-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sakon, Takuo, Naoki Fujimoto, Sho Saruki, Takeshi Kanomata, Hiroyuki Nojiri und Yoshiya Adachi. „Magnetic Field-Induced Strain of Metamagnetic Heusler Alloy Ni41Co9Mn31.5Ga18.5“. In Shape-Memory Materials. InTech, 2018. http://dx.doi.org/10.5772/intechopen.76291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Metamagnetický"

1

Yuan, Hsiao-Kuan, Wenshan Cai, Uday K. Chettiar, Vashista de Silva, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir P. Drachev und Vladimir M. Shalaev. „Fabrication of Metamagnetics for Visible Wavelengths“. In Frontiers in Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/fio.2007.fwd4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yuan, Hsiao-Kuan, Wenshan Cai, Uday K. Chettiar, Vashista de Silva, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir P. Drachev und Vladimir M. Shalaev. „Metamagnetics for Visible Wavelengths (491 – 754 nm)“. In Photonic Metamaterials: From Random to Periodic. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/meta.2007.ma4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

GRIGERA, S. A., A. P. MACKENZIE, A. J. SCHOFELD, S. R. JULIAN und G. G. LONZARICH. „A METAMAGNETIC QUANTUM CRITICAL ENDPOINT IN Sr3Ru2O7“. In Physical Phenomena at High Magnetic Fields - IV. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777805_0092.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Araki, Shingo, Minami Hayashida, Naoto Nishiumi, Hiroki Manabe, Yoichi Ikeda, Tatsuo C. Kobayashi, Keizo Murata et al. „Metamagnetic Transition of Itinerant Ferromagnet U3P4under High Pressure“. In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.011081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

SUSLOV, A., D. DASGUPTA, J. R. FELLER, B. K. SARMA, J. B. KETTERSON, D. G. HINKS, M. JAIME, F. BALAKIREV, A. MIGLIORI und A. LACERDA. „ULTRASONIC MEASUREMENTS AT THE METAMAGNETIC TRANSITION IN URu2Si2“. In Physical Phenomena at High Magnetic Fields - IV. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777805_0031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Galgano, G. D., A. B. Henriques, G. Bauer, G. Springholz, Jisoon Ihm und Hyeonsik Cheong. „Optical Probing of metamagnetic phases in epitaxial EuSe“. In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666555.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Drachev, Vladimir P., Tom Tiwald, Josh Borneman, Shumin Xiao, Alexander V. Kildishev, Vladimir M. Shalaev und Augustine Urbas. „Bi-Anisotropy of Optical Metamagnetics Studied with Spectroscopic Ellipsometry“. In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qwf2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

SUSLOV, A., D. DASGUPTA, J. R. FELLER, B. K. SARMA, J. B. KETTERSON und D. G. HINKS. „ULTRASONIC AND MAGNETIZATION STUDIES AT THE METAMAGNETIC TRANSITION IN UPt3“. In Physical Phenomena at High Magnetic Fields - IV. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777805_0039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chandrasekar, Rohith, Naresh K. Emani, Alexei Lagutchev, Vladimir M. Shalaev, Alexander V. Kildishev, Cristian Ciraci und David R. Smith. „Second Harmonic Generation by Metamagnetics: Interplay of Electric and Magnetic Resonances“. In Frontiers in Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/fio.2014.fm4b.5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

OHTA, H., T. ARIOKA, E. KULATOV, S. HALILOV und L. VINOKUROVA. „BAND CALCULATION STUDY OF METAMAGNETIC TRANSITIONS OF FeSi IN MEGAGAUSS FIELD“. In Proceedings of the VIIIth International Conference on Megagauss Magnetic Field Generation and Related Topics. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702517_0044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie