Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Metals Fatigue“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Metals Fatigue" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Metals Fatigue"
Correia, J. A. F. O., A. M. P. De Jesus, I. F. Pariente, J. Belzunce und A. Fernández-Canteli. „Mechanical fatigue of metals“. Engineering Fracture Mechanics 185 (November 2017): 1. http://dx.doi.org/10.1016/j.engfracmech.2017.10.029.
Der volle Inhalt der QuellePolák, Jaroslav, Jiří Man und Ivo Kuběna. „The True Shape of Persistent Slip Markings in Fatigued Metals“. Key Engineering Materials 592-593 (November 2013): 781–84. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.781.
Der volle Inhalt der QuelleEnomoto, Masatoshi. „Prediction of Fatigue Life for Light Metals and their Welded Metals“. Materials Science Forum 794-796 (Juni 2014): 273–77. http://dx.doi.org/10.4028/www.scientific.net/msf.794-796.273.
Der volle Inhalt der QuelleKAWAGOISHI, Norio, Qiang CHEN, Masahiro GOTO, Qingyuan WANG und Hironobu NISITANI. „Ultrasonic Fatigue Properties of Metals“. Proceedings of Conference of Kyushu Branch 2003 (2003): 47–48. http://dx.doi.org/10.1299/jsmekyushu.2003.47.
Der volle Inhalt der QuelleTROSHCHENKO, V. T. „Fatigue fracture toughness of metals“. Fatigue & Fracture of Engineering Materials & Structures 32, Nr. 4 (April 2009): 287–91. http://dx.doi.org/10.1111/j.1460-2695.2009.01343.x.
Der volle Inhalt der QuelleFonseca de Oliveira Correia, José António, Miguel Muñiz Calvente, Abílio Manuel Pinho de Jesus und Alfonso Fernández-Canteli. „ICMFM18-Mechanical fatigue of metals“. International Journal of Structural Integrity 8, Nr. 6 (04.12.2017): 614–16. http://dx.doi.org/10.1108/ijsi-10-2017-0055.
Der volle Inhalt der QuellePineau, André, David L. McDowell, Esteban P. Busso und Stephen D. Antolovich. „Failure of metals II: Fatigue“. Acta Materialia 107 (April 2016): 484–507. http://dx.doi.org/10.1016/j.actamat.2015.05.050.
Der volle Inhalt der QuelleVinogradov, A., und S. Hashimoto. „Fatigue of Severely Deformed Metals“. Advanced Engineering Materials 5, Nr. 5 (16.05.2003): 351–58. http://dx.doi.org/10.1002/adem.200310078.
Der volle Inhalt der QuelleTeng, N. J., und T. H. Lin. „Elastic Anisotropy Effect of Crystals on Polycrystal Fatigue Crack Initiation“. Journal of Engineering Materials and Technology 117, Nr. 4 (01.10.1995): 470–77. http://dx.doi.org/10.1115/1.2804741.
Der volle Inhalt der QuelleLowe, Terry C. „Enhancing Fatigue Properties of Nanostructured Metals and Alloys“. Advanced Materials Research 29-30 (November 2007): 117–22. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.117.
Der volle Inhalt der QuelleDissertationen zum Thema "Metals Fatigue"
Nowicki, Timothy. „Statistical model prediction of fatigue life for diffusion bonded Inconel 600 /“. Online version of thesis, 2008. http://hdl.handle.net/1850/7984.
Der volle Inhalt der QuelleFernandes, Paulo Jorge Luso. „Fatigue and fracture of metals in liquid-metal environments“. Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337963.
Der volle Inhalt der QuelleLunt, William S. „Molecular dynamics simulation of fatigue damage in metals“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FLunt.pdf.
Der volle Inhalt der QuelleErasmus, Daniel Jacobus. „The fatigue life cycle prediction of a light aircraft undercarriage“. Thesis, Nelson Mandela Metropolitan University, 2010. http://hdl.handle.net/10948/1527.
Der volle Inhalt der QuelleWilliams, Zachary. „Krouse Fatigue for Metals with Elevated Mean Stress“. Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1597075964521893.
Der volle Inhalt der QuelleRepetto, Eduardo A. Ortiz Michael. „On the fatigue behavior of ductile F.C.C. metals /“. Diss., Pasadena, Calif. : California Institute of Technology, 1998. http://resolver.caltech.edu/CaltechETD:etd-01242008-133649.
Der volle Inhalt der QuelleZhao, Tianwen. „Fatigue of aluminum alloy 7075-T651 /“. abstract and full text PDF (UNR users only), 2009. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3342620.
Der volle Inhalt der Quelle"December, 2008." Includes bibliographical references (leaves 76-83). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2009]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
Morrissey, Ryan J. „Frequency and mean stress effects in high cycle fatigue of Ti-6A1-4V“. Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17095.
Der volle Inhalt der QuelleJin, Ohchang. „The characterization of small fatigue crack growth in PH13-8 Mo stainless steel“. Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19633.
Der volle Inhalt der QuelleGhodratighalati, Mohamad. „Multiscale Modeling of Fatigue and Fracture in Polycrystalline Metals, 3D Printed Metals, and Bio-inspired Materials“. Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104944.
Der volle Inhalt der QuelleDoctor of Philosophy
The goal of this research is developing a multiscale framework to study the details of fracture and fatigue for the rolling contact in rails, additively manufactured alloys, and bio-inspired hierarchical materials. Rolling contact fatigue (RCF) is a major source of failure and a dominant cause of maintenance and replacements in many railways around the world. Different computational models are developed for studying rolling contact fatigue in rail materials. The method can predict RCF life and simulate crack initiation sites under various conditions and the results will help better maintenance of the railways and increase the safety of trains. The developed model is employed to study the fracture and fatigue behavior in 3D printed metals created by the selective laser melting (SLM) method. SLM method as a part of metal additive manufacturing (AM) technologies is revolutionizing industries including biomedical, automotive, aerospace, energy, and many others. Since experiments on 3D printed metals are considerably time-consuming and expensive, computational analysis is a proper alternative to reduce cost and time. Our method for studying the fatigue at the microstructural level of 3D printed alloys can help to create more fatigue and fracture resistant materials. In the last section, we have studied fracture behavior in bio-inspired materials. A fundamental problem in engineering is how to find the design that exhibits the best combination of mechanical properties. Biological materials like bone, nacre, and teeth are constructed from simple building blocks and show a surprising combination of high strength and toughness. By inspiring from these materials, we have simulated fracture behavior of a pre-designed composite material consisting of soft and stiff building blocks. The results show a better performance of bio-inspired structure compared to its building blocks. Furthermore, an optimization method is implemented into the designing the bio-inspired structures for the first time, which enables us to perform the bio-inspired material design with the target of finding the most efficient geometries that can resist defects in their structure.
Bücher zum Thema "Metals Fatigue"
1954-, Hejwowski Tadeusz, Hrsg. Thermal fatigue of metals. New York: M. Dekker, 1991.
Den vollen Inhalt der Quelle findenSchijve, Jaap. Biaxial Fatigue of Metals. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23606-3.
Der volle Inhalt der QuelleBathias, Claude. Fatigue Limit in Metals. Hoboken, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118648704.
Der volle Inhalt der QuelleCorreia, José A. F. O., Abílio M. P. De Jesus, António Augusto Fernandes und Rui Calçada, Hrsg. Mechanical Fatigue of Metals. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13980-3.
Der volle Inhalt der QuelleCardona, D. C. Fatigue of brittle metals. Birmingham: University of Birmingham, 1990.
Den vollen Inhalt der Quelle findenI, Stephens R., und Fuchs H. O. 1907-, Hrsg. Metal fatigue in engineering. 2. Aufl. New York: Wiley, 2001.
Den vollen Inhalt der Quelle findenDang, Van Ky, und Papadopoulos Iōannēs V, Hrsg. High-cycle metal fatique: From theory to applications. Wien: Springer, 1999.
Den vollen Inhalt der Quelle findenJ, Comer Jess, und Handrock James L, Hrsg. Fundamentals of metal fatigue analysis. Englewood Cliffs, N.J: Prentice Hall, 1990.
Den vollen Inhalt der Quelle finden1935-, Marsh K. J., und Pook L. P, Hrsg. Metal fatigue. Mineola, NY: Dover Publications, 1999.
Den vollen Inhalt der Quelle findenMilella, Pietro Paolo. Fatigue and Corrosion in Metals. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2336-9.
Der volle Inhalt der QuelleBuchteile zum Thema "Metals Fatigue"
Kaesche, Helmut. „Corrosion Fatigue“. In Corrosion of Metals, 525–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-96038-3_16.
Der volle Inhalt der QuelleCarlson, R. L., G. A. Kardomateas und J. I. Craig. „Fatigue in Metals“. In Solid Mechanics and Its Applications, 19–39. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4252-9_3.
Der volle Inhalt der QuelleMilella, Pietro Paolo. „Fatigue Testing. Fatigue Curve Construction and Fatigue Limit Assessment“. In Fatigue and Corrosion in Metals, 431–78. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_10.
Der volle Inhalt der QuelleMilella, Pietro Paolo. „Corrosion Fatigue“. In Fatigue and Corrosion in Metals, 767–806. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_16.
Der volle Inhalt der QuelleMilella, Pietro Paolo. „Multiaxial Fatigue“. In Fatigue and Corrosion in Metals, 477–520. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_9.
Der volle Inhalt der QuelleMilella, Pietro Paolo. „Corrosion Fatigue“. In Fatigue and Corrosion in Metals, 885–923. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_20.
Der volle Inhalt der QuelleMilella, Pietro Paolo. „Multiaxial Fatigue“. In Fatigue and Corrosion in Metals, 593–636. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_13.
Der volle Inhalt der QuelleBhaduri, Amit. „Fatigue“. In Mechanical Properties and Working of Metals and Alloys, 317–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7209-3_8.
Der volle Inhalt der QuelleMilella, Pietro Paolo. „Stress-Based Fatigue Analysis High Cycle Fatigue“. In Fatigue and Corrosion in Metals, 245–308. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_5.
Der volle Inhalt der QuelleMilella, Pietro Paolo. „Strain-Based Fatigue Analysis Low Cycle Fatigue“. In Fatigue and Corrosion in Metals, 309–63. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Metals Fatigue"
Mamiya, Edgar Nobuo, und José Alexander Araújo. „A Criterion to Predict the Fatigue Strength of Hard Metals under Multiaxial Loading“. In SAE Brasil International Conference on Fatigue. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-4065.
Der volle Inhalt der QuelleLuong, Minh Phong. „Infrared thermography of fatigue in metals“. In Aerospace Sensing, herausgegeben von Jan K. Eklund. SPIE, 1992. http://dx.doi.org/10.1117/12.58539.
Der volle Inhalt der Quelle„The Development of Fatigue Cracks in Metals“. In Experimental Mechanics of Solids. Materials Research Forum LLC, 2019. http://dx.doi.org/10.21741/9781644900215-18.
Der volle Inhalt der QuelleLuong, Minh Phong. „Fatigue evaluation of metals using infrared thermography“. In Second International Conference on Experimental Mechanics, herausgegeben von Fook S. Chau und Chenggen Quan. SPIE, 2001. http://dx.doi.org/10.1117/12.429590.
Der volle Inhalt der QuelleXue, Yibin, Tong Li und Frank Abdi. „Fatigue Damage Initiation Life Prediction for Heterogeneous Metals“. In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-1653.
Der volle Inhalt der QuelleKrapez, J. C., D. Pacou und G. Gardette. „Lock-in thermography and fatigue limit of metals“. In 2000 Quantitative InfraRed Thermography. QIRT Council, 2000. http://dx.doi.org/10.21611/qirt.2000.051.
Der volle Inhalt der QuelleEwenz, L. „Approach to transferring force-based fatigue curves into stress-related fatigue curves for clinch joints“. In Sheet Metal 2023. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902417-18.
Der volle Inhalt der QuelleSan Marchi, Chris, und Brian P. Somerday. „Fatigue Crack Growth of Structural Metals for Hydrogen Service“. In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57701.
Der volle Inhalt der QuelleVshivkov, A., A. Iziumova und O. Plekhov. „Experimental study of thermodynamics propagation fatigue crack in metals“. In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932925.
Der volle Inhalt der QuelleBoyce, Brad, Christopher Barr, Ta Duong, Daniel Bufford, A. Molkeri, Nathan Heckman, David Adams, A. Srivastava, Khalid Hattar und Michael Demkowicz. „Implications of Fatigue-Crack Healing in Nanocrystalline Metals [Slides]“. In TMS 2022 Annual Meeting & Exhibition, Anaheim, CA (United States), 27 Feb- 3 Mar 2022. US DOE, 2023. http://dx.doi.org/10.2172/2002234.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Metals Fatigue"
Farkas, Diana. Atomistic Mechanisms of Fatigue in Nanocrystalline Metals. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2004. http://dx.doi.org/10.21236/ada438940.
Der volle Inhalt der QuelleHertzberg, Richard W. Fatigue and Fracture Mechanics of Structural Metals, Plastics, and Composites. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada173064.
Der volle Inhalt der QuelleLewandowski, John J. Microstructural Effects on Fracture and Fatigue of Advanced Refractory Metals and Composites. Fort Belvoir, VA: Defense Technical Information Center, Juni 2001. http://dx.doi.org/10.21236/ada387898.
Der volle Inhalt der QuelleGuralnick. Hysteresis and Acoustic Emission as Non-Destructive Measures of the Fatigue Process in Metals. Fort Belvoir, VA: Defense Technical Information Center, März 1995. http://dx.doi.org/10.21236/ada295602.
Der volle Inhalt der QuelleHackel, L. A., und H.-L. Chen. Laser Peening--Strengthening Metals to Improve Fatigue Lifetime and Retard Stress-Induced Corrosion Cracking in Gears, Bolts and Cutter. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/15004997.
Der volle Inhalt der QuelleMaxey. L51427 ERW Weld Zone Characteristics. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 1992. http://dx.doi.org/10.55274/r0011187.
Der volle Inhalt der QuelleRiveros, Guillermo, und Hussam Mahmoud. Underwater carbon fiber reinforced polymer (CFRP)–retrofitted steel hydraulic structures (SHS) fatigue cracks. Engineer Research and Development Center (U.S.), März 2023. http://dx.doi.org/10.21079/11681/46588.
Der volle Inhalt der QuelleBi, Yunpeng, Xi Li, Huixin Yan, Xiaomei Zhang, Hongyi Guan, Haiyu Zhu, Tingwei Ding und Bailin Song. Acupoint massage for chronic fatigue syndrome:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2023. http://dx.doi.org/10.37766/inplasy2023.4.0083.
Der volle Inhalt der QuelleRosenfeld und Kiefner. L52270 Basics of Metal Fatigue in Natural Gas Pipeline Systems - A Primer for Gas Pipeline Operators. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2004. http://dx.doi.org/10.55274/r0010154.
Der volle Inhalt der QuelleWang, Yanli, Peijun Hou und Sam Sham. Report on FY 2020 creep, fatigue and creep fatigue testing of Alloy 709 base metal at ORNL. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1671410.
Der volle Inhalt der Quelle