Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Metallurgical powder“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Metallurgical powder" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Metallurgical powder"
Eck, R., H. P. Martinz, T. Sakaki und M. Kato. „Powder metallurgical chromium“. Materials Science and Engineering: A 120-121 (November 1989): 307–12. http://dx.doi.org/10.1016/0921-5093(89)90755-7.
Der volle Inhalt der QuelleLiu, Na, Zhou Li, Hua Yuan, Wen Yong Xu, Yong Zhang und Guo Qing Zhang. „Powder Metallurgical Processing of Ti6Al4V Alloy“. Advanced Materials Research 217-218 (März 2011): 1336–42. http://dx.doi.org/10.4028/www.scientific.net/amr.217-218.1336.
Der volle Inhalt der QuelleLiu, Hu Ran. „The Profile Calculation and the Best Fillet of Powder Metallurgical Gears“. Materials Science Forum 694 (Juli 2011): 851–54. http://dx.doi.org/10.4028/www.scientific.net/msf.694.851.
Der volle Inhalt der QuelleJasper, Bruno, Jan W. Coenen, Johann Riesch, Till Höschen, Martin Bram und Christian Linsmeier. „Powder Metallurgical Tungsten Fiber-Reinforced Tungsten“. Materials Science Forum 825-826 (Juli 2015): 125–33. http://dx.doi.org/10.4028/www.scientific.net/msf.825-826.125.
Der volle Inhalt der QuelleKruzhanov, Vladislav, und Volker Arnhold. „Energy consumption in powder metallurgical manufacturing“. Powder Metallurgy 55, Nr. 1 (Februar 2012): 14–21. http://dx.doi.org/10.1179/174329012x13318077875722.
Der volle Inhalt der QuelleKruth, J. P., B. Van der Schueren, J. E. Bonse und B. Morren. „Basic Powder Metallurgical Aspects in Selective Metal Powder Sintering“. CIRP Annals 45, Nr. 1 (1996): 183–86. http://dx.doi.org/10.1016/s0007-8506(07)63043-1.
Der volle Inhalt der QuelleChen, Wei Ping, Dong Hui Yang, Jun Lu, Yuan Feng, Jian Qing Chen, Lei Wang, Jing Hua Jiang und Ai Bin Ma. „Fabrication of Zn Alloy Foam via Powder Metallurgical Approach“. Materials Science Forum 849 (März 2016): 819–24. http://dx.doi.org/10.4028/www.scientific.net/msf.849.819.
Der volle Inhalt der QuelleČapek, Jaroslav, und Dalibor Vojtěch. „Powder Metallurgical Techniques for Fabrication of Biomaterials“. Manufacturing Technology 15, Nr. 6 (01.12.2015): 964–69. http://dx.doi.org/10.21062/ujep/x.2015/a/1213-2489/mt/15/6/964.
Der volle Inhalt der QuelleJones, D. G. R., J. P. Fairclough, J. S. Abell und I. R. Harris. „Powder metallurgical processing of Tb0.27Dy0.73Fe2−x(0“. Journal of Applied Physics 69, Nr. 8 (15.04.1991): 5774–76. http://dx.doi.org/10.1063/1.347872.
Der volle Inhalt der QuellePrado, Jose Manuel. „Plastic Behaviour of Green Powder Metallurgical Compacts“. Materials Science Forum 534-536 (Januar 2007): 305–8. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.305.
Der volle Inhalt der QuelleDissertationen zum Thema "Metallurgical powder"
Kero, Ida. „Ti3SiC2 synthesis by powder metallurgical methods“. Licentiate thesis, Luleå tekniska universitet, Materialvetenskap, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17858.
Der volle Inhalt der QuelleGodkänd; 2007; 20070523 (ysko)
Kero, Ida. „Ti₃3SiC₂ synthesis by powder metallurgical methods /“. Luleå : Luleå tekniska universitet/Tillämpad fysik, maskin- och materialteknik/Materialteknik, 2007. http://epubl.ltu.se/1402-1757/2007/34/.
Der volle Inhalt der QuelleStüpp, César Augusto. „Powder metallurgical processing of magnesium-hydroxyapatite composites for biomedical applications“. reponame:Repositório Institucional da UFSC, 2015. https://repositorio.ufsc.br/xmlui/handle/123456789/159631.
Der volle Inhalt der QuelleMade available in DSpace on 2016-03-01T04:00:54Z (GMT). No. of bitstreams: 1 337500.pdf: 167170234 bytes, checksum: febf5b6bf3b44787af43f7794c3d6e26 (MD5) Previous issue date: 2015
Abstract : Biodegradable metal alloys are a new class of implant materials suitable for implants such as stents, bone plates and screws. The corrosion of magnesium alloys might provide a new mechanism where they could be used as degradable metal implants to be applied in musculo-skeletal surgery. In this case, a secondary surgery for implant retrieval is not needed. For that, magnesium alloys with controlled in vivo corrosion rates need to be developed. There is a high demand to design magnesium alloys with adjustable corrosion rates and suitable mechanical properties. An approach to this challenge is a magnesium metal matrix composite (Mg-MMC) composed of the magnesium alloy ZK60 and hydroxyapatite (HA) particles for tailoring its properties such as mechanical properties and corrosion resistance. The composite was produced by mechanical alloying followed by hot extrusion. HA in contact with molten magnesium releases toxic gases like phosphine (PH3), so solid-state processing such as mechanical milling and extrusion is feasible. This work presents the influence of different amounts of HA on the degradation behavior and mechanical properties, which shows that the HA addition has a substantial increase in the compression strength (up to 14% for 20 wt.% HA addition) and no negative effect on the controlled degradation behavior of this biomaterial.
Ligas metálicas biodegradáveis são uma nova classe de materiais de implante adequados para a cirurgia óssea. A corrosão de ligas de magnésio pode proporcionar um novo mecanismo onde tais ligas podem ser utilizadas como implantes metálicos degradáveis a serem aplicados em cirurgia músculo-esquelética. Nestes casos, a segunda cirurgia para retirada do implante não seria necessária. Para isso, ligas de magnésio com taxas de corrosão in vivo controladas precisam ser desenvolvidas. Há uma grande procura para projetar ligas de magnésio com taxas de corrosão ajustáveis e propriedades mecânicas aplicáveis. Uma abordagem a este desafio é um compósito de matriz metálica (CMM) composto pela liga de magnésio ZK60 e hidroxiapatita (HA) para aperfeiçoar suas propriedades como resistência mecânica e resistência à corrosão. O compósito é produzido via moagem de alta energia seguida de extrusão à quente. Uma vez que HA em contato com magnésio líquido libera gases tóxicos como fosfina (PH3), esta é a melhor forma de sua produção. Este trabalho mostra a influência de diferentes quantidades de hidroxiapatita na taxa de degradação e propriedades mecânicas do compósito, as quais evidenciam um aumento substancial na resistência à compressão com a adição de HA (até 14% para o compósito com 20% de HA), sem detrimento às propriedades de degradação controlada do biomaterial.
Ma, Taoran. „Powder-metallurgical processing and phase separation in ternary transition metal carbides“. Doctoral thesis, KTH, Materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207839.
Der volle Inhalt der QuelleQC 20170529
Erdem, Derya. „Microwave Sintering And Characterization Of Soft Magnetic Powder Metallurgical Ni-fe Alloys“. Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613550/index.pdf.
Der volle Inhalt der QuellePayton, Eric John. „Characterization and Modeling of Grain Coarsening in Powder Metallurgical Nickel-Based Superalloys“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250265477.
Der volle Inhalt der QuelleFredriksson, Wendy. „Depth Profiling of the Passive Layer on Stainless Steel using Photoelectron Spectroscopy“. Doctoral thesis, Uppsala universitet, Institutionen för kemi - Ångström, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179399.
Der volle Inhalt der QuelleSeemüller, Hans Christoph Maximilian [Verfasser], und M. [Akademischer Betreuer] Heilmaier. „Evaluation of Powder Metallurgical Processing Routes for Multi-Component Niobium Silicide-Based High-Temperature Alloys / Hans Christoph Maximilian Seemüller. Betreuer: M. Heilmaier“. Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1100529713/34.
Der volle Inhalt der QuelleSeemüller, Hans Christoph Maximilian [Verfasser], und Martin [Akademischer Betreuer] Heilmaier. „Evaluation of Powder Metallurgical Processing Routes for Multi-Component Niobium Silicide-Based High-Temperature Alloys / Hans Christoph Maximilian Seemüller. Betreuer: M. Heilmaier“. Karlsruhe : KIT-Bibliothek, 2016. http://nbn-resolving.de/urn:nbn:de:swb:90-544644.
Der volle Inhalt der QuelleKewes, Eloi. „Silicon grinding and fine particles : generation and behavior of metallurgical-grade silicon fine particles during grinding for the silicones industry“. Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0030/document.
Der volle Inhalt der QuelleMetallurgical-grade silicon (MG-Si, 99 %) powders were extensively investigated, particularly focusing on the fine particles (whose size is between 1 and 10 μm) comprised in these powders. This material is a reactant widely used in the silicones industry for the Direct Synthesis and is obtained by size reduction of millimetric silicon lumps. Powder properties are major stakes of the industrial process. Smaller sizes favor high specific surfaces and high rates of production, but can decrease the lowability, thus inducing poor heat evacuation resulting in hot spots and a decrease in selectivity. Such lowability issues are particularly associated with fine particles, hence understand the generation of these particles during grinding is of critical importance. New chemical and crystallographic characterization of MG-Si is presented, showing that fine particles contain on average less alloying elements than larger particles, yet their crystallographic structure is preserved through grinding. On the contrary, superfine particles (smaller than 1 μm) exhibit amorphous zones: this transformation is pressure induced, showing that these particles experience larger stresses during the grinding step. The behavior of MG-Si in grinding mills has been studied for the first time. At the single particle level, it has been confirmed that transgranular fracture is preferred in MG-Si. Moreover, fine particles can be produced from a single fracture event, due to multiple crack propagation and branching. The critical size under which plastic deformation preferentially occurs over fracture has been evaluated to be approximately 1 μm. These two facts are consistent with a lower level of impurities in fines, yet remaining crystalline, and with superfines exhibiting amorphous areas. At the multiple particle level, pilot scale batch milling experiments have been performed. The results are not included in this public version of the manuscript, please refer to the full manuscript. The consequences of the presence of fine particles in ground MG-Si powder on lowability has been assessed by means of angle of repose, compaction tests and fluidization experiments. A new elutriation behavior has been observed and characterized: for naturally ground MS-Si powders (including fine particles), particles smaller than 30 μm are entrained first, then only larger particles. This was not the case in absence of fine particles. The explanation may probably lie within the presence of polydisperse clusters, formed only in presence of fine particles. Parallel to this elutriation behavior, electrostatic measurements with an external electrometer showed that high potential with sign correlated with the type of particle elutriated are attained during elutriation. This may suggest that electrostatics is responsible for cluster formation
Bücher zum Thema "Metallurgical powder"
P, Beiss, Dalal K, Peters R, Huppmann W. J und Metal Powder Industries Federation, Hrsg. International atlas of powder metallurgical microstructures. Princeton, N.J: MPIF, 2002.
Den vollen Inhalt der Quelle findenHuiping, Tang, Hrsg. Fen mo ye jin tai ji jie gou cai liao: Powder metallurgical titanium base structural materials. Changsha Shi: Zhong nan da xue chu ban she, 2012.
Den vollen Inhalt der Quelle findenJones, David Geraint Rhys. The study of hydrogen in REFe [inferior] 2 (RE=Rare Earth) giant magnetostrictive laves phase compounds andits application to their powder metallurgical processing. Birmingham: University of Birmingham, 1992.
Den vollen Inhalt der Quelle findenAdaskin, Anatoliy, Aleksandr Krasnovskiy und Tat'yana Tarasova. Materials science and technology of metallic, non-metallic and composite materials. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1143245.
Der volle Inhalt der QuelleAll, India Seminar on Metallurgical Problems in Power Projects (1987 Lucknow India). All India Seminar on Metallurgical Problems in Power Projects: Proceedings, October 30-31, 1987. Lucknow: Institution of Engineers (India), Uttar Pradesh State Centre, 1987.
Den vollen Inhalt der Quelle findenSalʹnikov, V. G. Ėffektivnye sistemy ėlektrosnabzhenii͡a︡ predprii͡a︡tiĭ t͡s︡vetnoĭ metallurgii. Moskva: Metallurgii͡a︡, 1986.
Den vollen Inhalt der Quelle findenHosler, Dorothy. The sounds and colors of power: The sacred metallurgical technology of ancient West Mexico. Cambridge, Mass: MIT Press, 1994.
Den vollen Inhalt der Quelle findenCzajkowski, C. Metallurgical evaluation of an 18-inch feedwater line failure at the Surry Unit 2 power station. Atlanta, GA: Region II, U.S. Nuclear Regulatory Commission, 1987.
Den vollen Inhalt der Quelle findenShanghai jing ji qu gong ye gai mao: Shanghai ye jin, dian li juan. Shanghai Shi: Xue lin chu ban she, 1986.
Den vollen Inhalt der Quelle findenKravchenko, Igor. Technological processes in the technical service of machinery and equipment. ru: INFRA-M Academic Publishing LLC., 2017. http://dx.doi.org/10.12737/25226.
Der volle Inhalt der QuelleBuchteile zum Thema "Metallurgical powder"
Beiss, P., und P. Neumann. „7 Powder metallurgical filters“. In Powder Metallurgy Data, 504–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10689123_26.
Der volle Inhalt der QuelleEck, R., W. Köck und G. Kneringer. „“Creep of Powder Metallurgical Chromium”“. In Mechanics of Creep Brittle Materials 2, 202–17. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3688-4_18.
Der volle Inhalt der QuellePrado, Jose Manuel. „Plastic Behaviour of Green Powder Metallurgical Compacts“. In Progress in Powder Metallurgy, 305–8. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.305.
Der volle Inhalt der QuelleKainer, K. U., J. Schroder und B. L. Mordike. „Powder Metallurgical Production of Whisker Reinforced Magnesium“. In Developments in the Science and Technology of Composite Materials, 171–76. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1123-9_23.
Der volle Inhalt der QuelleGornik, Christian, und Jochen Perko. „Comprehensive Wear Study on Powder Metallurgical Steels for the Plastics Industry, Especially Injection Moulding Machines“. In Progress in Powder Metallurgy, 657–60. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.657.
Der volle Inhalt der QuelleLi, Jia-lin, Yong-fu Yu, Wen Chen und Xiao-yin Liu. „Study on Limonite Powder by Flash-Magnetic Roasting“. In 5th International Symposium on High-Temperature Metallurgical Processing, 311–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118887998.ch39.
Der volle Inhalt der QuelleBenzeşik, Kağan, Ahmet Turan und Onuralp Yücel. „A New Approach for the Production of Li4SiO4 Powder“. In 11th International Symposium on High-Temperature Metallurgical Processing, 561–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36540-0_50.
Der volle Inhalt der QuelleBrocchi, Eduardo, Douglas Torres, Rogério Navarro, Rodrigo Souza und José Brant. „Chemical Processing of a High Carbon FeCr Alloy Fine Powder“. In 6th International Symposium on High-Temperature Metallurgical Processing, 223–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093381.ch29.
Der volle Inhalt der QuelleTunçer, Buket, Mehmet Buğdaycı und Onuralp Yücel. „Production of CrB2 Powder Via Self Propagating High Temperature Synthesis“. In 6th International Symposium on High-Temperature Metallurgical Processing, 211–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48217-0_27.
Der volle Inhalt der QuelleBrocchi, Eduardo, Douglas Torres, Rogério Navarro, Rodrigo Souza und José Brant. „Chemical Processing of a High Carbon FeCr Alloy Fine Powder“. In 6th International Symposium on High-Temperature Metallurgical Processing, 223–30. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48217-0_29.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Metallurgical powder"
Matikas, Theodore E., Prasanna Karpur und Robert L. Crane. „Ultrasonic measurement of elastic moduli of porous powder metallurgical samples“. In Nondestructive Evaluation Techniques for Aging Infrastructure and Manufacturing, herausgegeben von Steven R. Doctor, Carol A. Nove und George Y. Baaklini. SPIE, 1996. http://dx.doi.org/10.1117/12.259075.
Der volle Inhalt der QuelleYi, Chew Pei, You Ah Heng und Vijayaram Thoguluva Raghavan. „Fabrication and characterization of Cu pellet using Powder Metallurgical method“. In 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2012. http://dx.doi.org/10.1109/smelec.2012.6417178.
Der volle Inhalt der QuellePettersson, Ola. „Isostatic Dry Bag Compacted Powder Metallurgical Cylinder Liner, Applications and Properties“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920219.
Der volle Inhalt der QuelleYin, Xiaowei, Chaogang Lou, Xiaobing Zhang, Wei Lei und Kai Hou. „Field Emission From the Carbon Nanotube Cathode Fabricated by Powder Metallurgical Method“. In 2006 19th International Vacuum Nanoelectronics Conference. IEEE, 2006. http://dx.doi.org/10.1109/ivnc.2006.335213.
Der volle Inhalt der QuelleIbraheem, F. H. „Modified pyro-metallurgical technology for recovery of impurities from crude lead using chalk powder“. In PETROLEUM 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/pmr120261.
Der volle Inhalt der QuelleChoi, Gwangbo, Seokjun Ha, Guhyun Kim und Inbum Jung. „Improvement of soft magnetic properties of Fe-Si-Al metal powder cores by metallurgical process“. In 2012 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2012. http://dx.doi.org/10.1109/vppc.2012.6422781.
Der volle Inhalt der QuelleNastic, A., B. Jodoin, D. Poirier und J. G. Legoux. „Powder Impact Temperature Influence on Metallurgical Bonding—An Investigation for Soft Particle Deposition on Hard Substrate“. In ITSC2021, herausgegeben von F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0189.
Der volle Inhalt der QuelleStringer, Craig, Andy Wright und Pete Imbrogno. „Powder Metallurgical Solution for a Complex Geometry Coupler Requiring High Dimensional Stability and Microstructural Uniformity through Heat Treatment“. In HT2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.ht2021p0017.
Der volle Inhalt der QuelleLangerman, Michael A., Gregory A. Buck, Umesh A. Korde und Vojislav D. Kalanovic. „Thermal Control of Laser Powder Deposition: Heat Transfer Considerations“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60386.
Der volle Inhalt der QuelleEboo, G. M., und A. G. Blake. „Laser Cladding of Gas Turbine Components“. In ASME 1986 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1986. http://dx.doi.org/10.1115/86-gt-298.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Metallurgical powder"
Fraser, Hamish L., und James C. Williams. Metallurgical Factors Influencing Direct Laser Deposition of Metallic Powers for Unitized Structures. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada435779.
Der volle Inhalt der Quelle