Zeitschriftenartikel zum Thema „Metallo-B-lactamase genes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Metallo-B-lactamase genes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Garau, Gianpiero, Anne Marie Di Guilmi und Barry G. Hall. „Structure-Based Phylogeny of the Metallo-β-Lactamases“. Antimicrobial Agents and Chemotherapy 49, Nr. 7 (Juli 2005): 2778–84. http://dx.doi.org/10.1128/aac.49.7.2778-2784.2005.
Der volle Inhalt der QuelleMatsumoto, Takehisa, Mika Nagata, Nau Ishimine, Kenji Kawasaki, Kazuyoshi Yamauchi, Eiko Hidaka, Eriko Kasuga et al. „Characterization of CIA-1, an Ambler Class A Extended-Spectrum β-Lactamase from Chryseobacterium indologenes“. Antimicrobial Agents and Chemotherapy 56, Nr. 1 (14.11.2011): 588–90. http://dx.doi.org/10.1128/aac.05165-11.
Der volle Inhalt der QuelleBiedenbach, Douglas J., Krystyna Kazmierczak, Samuel K. Bouchillon, Daniel F. Sahm und Patricia A. Bradford. „In VitroActivity of Aztreonam-Avibactam against a Global Collection of Gram-Negative Pathogens from 2012 and 2013“. Antimicrobial Agents and Chemotherapy 59, Nr. 7 (11.05.2015): 4239–48. http://dx.doi.org/10.1128/aac.00206-15.
Der volle Inhalt der QuelleAbaza, Amani F., Soraya A. El Shazly, Heba S. A. Selim und Gehan S. A. Aly. „Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria, Egypt“. Polish Journal of Microbiology 66, Nr. 3 (27.09.2017): 297–308. http://dx.doi.org/10.5604/01.3001.0010.4855.
Der volle Inhalt der QuelleBagheri Josheghani, Sareh, Rezvan Moniri, Farzaneh Firoozeh, Mojtaba Sehat und Yasaman Dasteh Goli. „Susceptibility Pattern and Distribution of Oxacillinases andblaPER-1Genes among Multidrug ResistantAcinetobacter baumanniiin a Teaching Hospital in Iran“. Journal of Pathogens 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/957259.
Der volle Inhalt der QuelleVivan, Ana Carolina Polano, Juliana Ferraz Rosa, Camila Fonseca Rizek, Marsileni Pelisson, Silvia Figueiredo Costa, Mariangela Hungria, Renata Kobayashi und Eliana Carolina Vespero. „Molecular characterization of carbapenem-resistant Klebsiella pneumoniae isolates from a university hospital in Brazil“. Journal of Infection in Developing Countries 11, Nr. 05 (01.06.2017): 379–86. http://dx.doi.org/10.3855/jidc.8614.
Der volle Inhalt der QuelleWoodford, Neil, Marie-France I. Palepou, Gioia S. Babini, Barry Holmes und David M. Livermore. „Carbapenemases of Chryseobacterium(Flavobacterium) meningosepticum: Distribution ofblaB and Characterization of a Novel Metallo-β-Lactamase Gene, blaB3, in the Type Strain, NCTC 10016“. Antimicrobial Agents and Chemotherapy 44, Nr. 6 (01.06.2000): 1448–52. http://dx.doi.org/10.1128/aac.44.6.1448-1452.2000.
Der volle Inhalt der QuelleLee, Kyungwon, Jong Back Lim, Jong Hwa Yum, Dongeun Yong, Yunsop Chong, June Myung Kim und David M. Livermore. „bla VIM-2 Cassette-Containing Novel Integrons in Metallo-β-Lactamase-Producing Pseudomonas aeruginosa and Pseudomonas putida Isolates Disseminated in a Korean Hospital“. Antimicrobial Agents and Chemotherapy 46, Nr. 4 (April 2002): 1053–58. http://dx.doi.org/10.1128/aac.46.4.1053-1058.2002.
Der volle Inhalt der QuelleAghamiri, Samira, Nour Amirmozafari, Jalil Fallah Mehrabadi, Babak Fouladtan und Hossein Samadi Kafil. „Antibiotic Resistance Pattern and Evaluation of Metallo-Beta Lactamase Genes Including bla-IMP and bla-VIM Types in Pseudomonas aeruginosa Isolated from Patients in Tehran Hospitals“. ISRN Microbiology 2014 (23.04.2014): 1–6. http://dx.doi.org/10.1155/2014/941507.
Der volle Inhalt der QuelleToleman, Mark A., Kenneth Rolston, Ronald N. Jones und Timothy R. Walsh. „Molecular and Biochemical Characterization of OXA-45, an Extended-Spectrum Class 2d′ β-Lactamase in Pseudomonas aeruginosa“. Antimicrobial Agents and Chemotherapy 47, Nr. 9 (September 2003): 2859–63. http://dx.doi.org/10.1128/aac.47.9.2859-2863.2003.
Der volle Inhalt der QuelleFurtado, Guilherme Henrique Campos, Ana Cristina Gales, Luciana Baria Perdiz, Anderson Fernandes Santos und Eduardo Alexandrino Servolo de Medeiros. „Prevalence and clinical outcomes of episodes of ventilator-associated pneumonia caused by SPM-1-producing and non-producing imipenem-resistant Pseudomonas aeruginosa“. Revista da Sociedade Brasileira de Medicina Tropical 44, Nr. 5 (Oktober 2011): 604–6. http://dx.doi.org/10.1590/s0037-86822011000500015.
Der volle Inhalt der QuelleKato, Naoki, Kikuo Yamazoe, Chang-Gyun Han und Eiichi Ohtsubo. „New Insertion Sequence Elements in the Upstream Region of cfiA in Imipenem-Resistant Bacteroides fragilis Strains“. Antimicrobial Agents and Chemotherapy 47, Nr. 3 (März 2003): 979–85. http://dx.doi.org/10.1128/aac.47.3.979-985.2003.
Der volle Inhalt der QuelleBiedenbach, D., S. Bouchillon, M. Hackel, D. Hoban, K. Kazmierczak, S. Hawser und R. Badal. „Dissemination of NDM Metallo-β-Lactamase Genes among Clinical Isolates of Enterobacteriaceae Collected during the SMART Global Surveillance Study from 2008 to 2012“. Antimicrobial Agents and Chemotherapy 59, Nr. 2 (17.11.2014): 826–30. http://dx.doi.org/10.1128/aac.03938-14.
Der volle Inhalt der QuelleValdezate, Sylvia, Fernando Cobo, Sara Monzón, María J. Medina-Pascual, Ángel Zaballos, Isabel Cuesta, Silvia Pino-Rosa und Pilar Villalón. „Genomic Background and Phylogeny of cfiA-Positive Bacteroides fragilis Strains Resistant to Meropenem-EDTA“. Antibiotics 10, Nr. 3 (16.03.2021): 304. http://dx.doi.org/10.3390/antibiotics10030304.
Der volle Inhalt der QuelleBogiel, Tomasz, Małgorzata Prażyńska, Joanna Kwiecińska-Piróg, Agnieszka Mikucka und Eugenia Gospodarek-Komkowska. „Carbapenem-Resistant Pseudomonas aeruginosa Strains-Distribution of the Essential Enzymatic Virulence Factors Genes“. Antibiotics 10, Nr. 1 (24.12.2020): 8. http://dx.doi.org/10.3390/antibiotics10010008.
Der volle Inhalt der QuelleYong, Dongeun, Mark A. Toleman, Jan Bell, Brett Ritchie, Rachael Pratt, Henry Ryley und Timothy R. Walsh. „Genetic and Biochemical Characterization of an Acquired Subgroup B3 Metallo-β-Lactamase Gene,blaAIM-1, and Its Unique Genetic Context in Pseudomonas aeruginosa from Australia“. Antimicrobial Agents and Chemotherapy 56, Nr. 12 (17.09.2012): 6154–59. http://dx.doi.org/10.1128/aac.05654-11.
Der volle Inhalt der QuelleLukić-Grlić, Amarela, Matea Kos, Marta Žižek, Josefa Luxner, Andrea Grisold, Gernot Zarfel und Branka Bedenić. „Emergence of Carbapenem-Hydrolyzing Oxacillinases in Acinetobacter baumannii in Children from Croatia“. Chemotherapy 64, Nr. 4 (2019): 167–72. http://dx.doi.org/10.1159/000503746.
Der volle Inhalt der QuelleIshiai, Masamichi, Masayo Kimura, Keiko Namikoshi, Mitsuyoshi Yamazoe, Kazuhiko Yamamoto, Hiroshi Arakawa, Kazunaga Agematsu et al. „DNA Cross-Link Repair Protein SNM1A Interacts with PIAS1 in Nuclear Focus Formation“. Molecular and Cellular Biology 24, Nr. 24 (15.12.2004): 10733–41. http://dx.doi.org/10.1128/mcb.24.24.10733-10741.2004.
Der volle Inhalt der QuelleBansal, Madhulika, Anita Pandey, Kalpana Chauhan und Peetam Singh. „Molecular characterization of carbapenemase production in clinical isolates of Klebsiella species isolated in a tertiary care hospital“. Biomedicine 43, Nr. 6 (27.01.2024): 1813–16. http://dx.doi.org/10.51248/.v43i6.2515.
Der volle Inhalt der QuelleMojica, Maria F., Joseph Rutter, Magdalena A. Taracila, Krisztina M. Papp-Wallce, James Spencer, Alejandro J. Vila und Robert A. Bonomo. „1437. Biochemical characterization of L1 and L2 β-lactamases from clinical isolates of Stenotrophomonas maltophilia“. Open Forum Infectious Diseases 7, Supplement_1 (01.10.2020): S723. http://dx.doi.org/10.1093/ofid/ofaa439.1618.
Der volle Inhalt der QuelleYamano, Yoshinori, Miki Takemura, Krystyna Kazmierczak, Mark G. G. Wise, Meredith Hackel, Daniel F. Sahm und Roger Echols. „1452. Molecular Profile of β-Lactamase Genes and Siderophore-Dependent Iron Transporter Genes of Cefiderocol High MIC Isolates from SIDERO-WT Studies“. Open Forum Infectious Diseases 7, Supplement_1 (01.10.2020): S728—S729. http://dx.doi.org/10.1093/ofid/ofaa439.1633.
Der volle Inhalt der QuelleSimner, Patricia J., Belita N. A. Opene, Krizia K. Chambers, Matthew E. Naumann, Karen C. Carroll und Pranita D. Tamma. „Carbapenemase Detection among Carbapenem-Resistant Glucose-Nonfermenting Gram-Negative Bacilli“. Journal of Clinical Microbiology 55, Nr. 9 (12.07.2017): 2858–64. http://dx.doi.org/10.1128/jcm.00775-17.
Der volle Inhalt der QuelleNawal Haji Mahmood und Azad Al-Brefkani. „Molecular Characterisation of Carbapenemase-Producing Acinetobacter baumannii isolates from Hospitalised Patients in Iraq“. Journal of Life and Bio Sciences Research 3, Nr. 02 (17.08.2022): 27–32. http://dx.doi.org/10.38094/jlbsr30261.
Der volle Inhalt der QuelleTozluyur, Abdullah. „Fosfomycin in the treatment of New Delhi Metallo-β-Lactamase-5 (blaNDM-5)-producing Escherichia coli infection“. German Journal of Microbiology 4, Nr. 1 (Januar 2024): 1–5. http://dx.doi.org/10.51585/gjm.2024.1.0028.
Der volle Inhalt der QuelleLi, Hongyang, Mark A. Toleman, Peter M. Bennett, Ronald N. Jones und Timothy R. Walsh. „Complete Sequence of p07-406, a 24,179-Base-Pair Plasmid Harboring the blaVIM-7 Metallo-β-Lactamase Gene in a Pseudomonas aeruginosa Isolate from the United States“. Antimicrobial Agents and Chemotherapy 52, Nr. 9 (30.06.2008): 3099–105. http://dx.doi.org/10.1128/aac.01093-07.
Der volle Inhalt der QuelleAlnimr, Amani M. „Predictive role of culture-based MIC testing vs. genotyping for carbapenem-resistant Enterobacterales in a non-universal screening, highly resourced setting“. Electronic Journal of General Medicine 20, Nr. 4 (01.07.2023): em495. http://dx.doi.org/10.29333/ejgm/13181.
Der volle Inhalt der QuelleHermes, Djuli M., Caroline Pormann Pitt, Larissa Lutz, Aline B. Teixeira, Vanessa B. Ribeiro, Bárbara Netto, Andreza F. Martins, Alexandre P. Zavascki und Afonso L. Barth. „Evaluation of heteroresistance to polymyxin B among carbapenem-susceptible and -resistant Pseudomonas aeruginosa“. Journal of Medical Microbiology 62, Nr. 8 (01.08.2013): 1184–89. http://dx.doi.org/10.1099/jmm.0.059220-0.
Der volle Inhalt der QuelleRusskih, A. A., N. V. Luk'janenko, A. V. Rudenko, A. A. Kolomiets, A. A. Petrova und Y. V. Mikhailova. „Preliminary results of a study based on genome-wide sequencing of resistant K.pneumoniae strains in a multidisciplinary hospital in Barnaul“. Medicina 11, Nr. 4 (2023): 42–54. http://dx.doi.org/10.29234/2308-9113-2023-11-4-42-54.
Der volle Inhalt der QuelleVonBank, Brittany, Sean O’Malley, Paula Snippes Vagnone, Mary Ellen Bennett, Tammy Hale, Jacy Walters und Ruth Lynfield. „2462. Public Health Response to Contain the First Outbreak of New Delhi Metallo-β-Lactamase-Producing Klebsiella pneumoniae in Minnesota“. Open Forum Infectious Diseases 6, Supplement_2 (Oktober 2019): S852. http://dx.doi.org/10.1093/ofid/ofz360.2140.
Der volle Inhalt der Quellede Sousa, Telma, Michel Hébraud, Olimpia Alves, Eliana Costa, Luís Maltez, José Eduardo Pereira, Ângela Martins, Gilberto Igrejas und Patricia Poeta. „Study of Antimicrobial Resistance, Biofilm Formation, and Motility of Pseudomonas aeruginosa Derived from Urine Samples“. Microorganisms 11, Nr. 5 (19.05.2023): 1345. http://dx.doi.org/10.3390/microorganisms11051345.
Der volle Inhalt der QuelleLob, Sibylle, Krystyna Kazmierczak, Gregory Stone und Daniel F. Sahm. „680. In vitro Activity of Ceftazidime–Avibactam and Comparator Agents Against Pseudomonas aeruginosa from ICU and Non-ICU Wards Collected in Latin America and Globally as Part of the ATLAS Surveillance Program 2016–2017“. Open Forum Infectious Diseases 6, Supplement_2 (Oktober 2019): S310. http://dx.doi.org/10.1093/ofid/ofz360.748.
Der volle Inhalt der QuelleKazmierczak, Krystyna, Gregory Stone und Daniel F. Sahm. „693. In Vitro Activity of Ceftazidime–Avibactam and Comparator Agents Against Enterobacteriaceae and Pseudomonas aeruginosa Collected From Patients with Bloodstream Infections as Part of the ATLAS Global Surveillance Program, 2014–2017“. Open Forum Infectious Diseases 6, Supplement_2 (Oktober 2019): S314. http://dx.doi.org/10.1093/ofid/ofz360.761.
Der volle Inhalt der QuelleKazmierczak, Krystyna, Boudewijn De Jonge, Gregory G. Stone und Dan Sahm. „1372. In Vitro Activity of Novel Ceftazidime–Avibactam and Aztreonam–Avibactam Combinations Against Carbapenem-Nonsusceptible Enterobacteriaceae Isolates by Phenotype Collected in Latin America From 2014 to 2017 as Part of the INFORM Surveillance Program“. Open Forum Infectious Diseases 5, suppl_1 (November 2018): S420. http://dx.doi.org/10.1093/ofid/ofy210.1203.
Der volle Inhalt der QuelleHackel, Meredith, Mark G. G. Wise und Daniel F. Sahm. „1253. Antimicrobial Activity of Cefepime in Combination with Taniborbactam Against Clinical Isolates of Enterobacterales from 2018-2020 Global Surveillance“. Open Forum Infectious Diseases 8, Supplement_1 (01.11.2021): S715. http://dx.doi.org/10.1093/ofid/ofab466.1445.
Der volle Inhalt der QuelleLob, Sibylle, Meredith Hackel, Gregory Stone und Daniel F. Sahm. „1263. In Vitro Activity of Ceftazidime-avibactam and Comparator Agents against Enterobacterales and Pseudomonas aeruginosa Collected from Patients with Bloodstream Infections as Part of the ATLAS Global Surveillance Program, 2017-2019“. Open Forum Infectious Diseases 8, Supplement_1 (01.11.2021): S720. http://dx.doi.org/10.1093/ofid/ofab466.1455.
Der volle Inhalt der QuelleLob, Sibylle, Krystyna Kazmierczak, Francis Arhin und Daniel F. Sahm. „1231. In Vitro Activity of Aztreonam-Avibactam and Comparator Agents Against Enterobacterales from Patients with Lower Respiratory Tract Infections Collected During the ATLAS Global Surveillance Program, 2017-2019“. Open Forum Infectious Diseases 8, Supplement_1 (01.11.2021): S705. http://dx.doi.org/10.1093/ofid/ofab466.1423.
Der volle Inhalt der QuelleKazmierczak, Krystyna, Sibylle Lob, Greg Stone und Daniel F. Sahm. „1569. In Vitro Activity of Ceftazidime-avibactam and Comparator Agents against Enterobacterales and Pseudomonas aeruginosa Collected from Patients with Bloodstream Infections as Part of the ATLAS Global Surveillance Program, 2015-2018“. Open Forum Infectious Diseases 7, Supplement_1 (01.10.2020): S783—S784. http://dx.doi.org/10.1093/ofid/ofaa439.1749.
Der volle Inhalt der QuelleSkachkova, T. S., E. V. Kniazeva, E. N. Goloveshkina, T. V. Tronza, E. I. Kondratyeva, A. Y. Voronkova und V. G. Akimkin. „The Prevalence of Genetic Determinants of Antibiotic Resistance, which are of Particular Epidemiological Consequences, in the Microbiota of the Oropharyngeal Swabs in Patients with Cystic Fibrosis“. Epidemiology and Vaccinal Prevention 22, Nr. 4 (20.09.2023): 44–48. http://dx.doi.org/10.31631/2073-3046-2023-22-4-44-48.
Der volle Inhalt der QuelleCastanheira, Mariana, Jill Lindley, Timothy B. Doyle, Andrew P. Davis und Olga Lomovskaya. „166. Activity of a Novel β-lactamase Inhibitor QPX7728 Combined With β-lactams Against st258 klebsiella Pneumoniae and st131 escherchia Coli Isolates Producing β-lactamases“. Open Forum Infectious Diseases 7, Supplement_1 (01.10.2020): S212—S213. http://dx.doi.org/10.1093/ofid/ofaa439.476.
Der volle Inhalt der QuelleAdelman, Max W., Chris W. Bower, Julian E. Grass, Uzma Ansari, Isaac See, Joseph D. Lutgring und Jesse T. Jacob. „177. Distinctive Features of Ertapenem Mono-Resistant Carbapenem-Resistant Enterobacterales in the United States: A Cohort Study“. Open Forum Infectious Diseases 8, Supplement_1 (01.11.2021): S108—S109. http://dx.doi.org/10.1093/ofid/ofab466.177.
Der volle Inhalt der QuelleHeydari, Farzad, Fatih Koksal, Cansu Önlen Güneri und Suna Kizilyildirim. „Molecular analysis of metallo-β-lactamase genes in some gram-negative bacteria and examination of the phylogenetic relationships of isolates“. Journal of Clinical Medicine of Kazakhstan 19, Nr. 6 (30.12.2022): 18–26. http://dx.doi.org/10.23950/jcmk/12648.
Der volle Inhalt der QuelleAkereuke, U. E., I. A. Onwuezobe, A. E. Ekuma, E. N. Edem, N. S. Uko, R. S. Okon, E. O. Bawonda und E. N. Ekpenyong. „Molecular Profile of Metallo-β-Lactamase Producing Bacterial Isolates from Clinical Samples; South-South Nigeria Perspective“. Mikrobiolohichnyi Zhurnal 85, Nr. 6 (21.12.2023): 15–25. http://dx.doi.org/10.15407/microbiolj85.06.015.
Der volle Inhalt der QuelleMendes, Rodrigo E., Timothy B. Doyle, Dee Shortridge, Helio S. Sader, Jennifer M. Streit, Mariana Castanheira und Mariana Castanheira. „1232. In Vitro Activity of Cefiderocol and Comparator Agents against Molecularly characterized Carbapenem-resistant Enterobacterales Clinical Isolates Causing Infection in United States Hospitals (2020)“. Open Forum Infectious Diseases 8, Supplement_1 (01.11.2021): S705—S706. http://dx.doi.org/10.1093/ofid/ofab466.1424.
Der volle Inhalt der QuelleLiu, Shuang, Lei Zhang, Chunlin Feng, Jin Zhu, Anqi Li, Jingxuan Zhao, Yuan Zhang et al. „Characterization and Identification of a novel chromosome-encoded metallo-β-lactamase WUS-1 in Myroides albus P34“. Frontiers in Microbiology 13 (01.12.2022). http://dx.doi.org/10.3389/fmicb.2022.1059997.
Der volle Inhalt der QuelleRudresh, Shoorashetty Manohar, Basavaraj, MV Naik Kusuma und Giriyapura Siddappa Ravi. „Carba M Test for Rapid Detection and Simultaneous Differentiation of Carbapenemases among Clinical Isolates of Gram Negative Bacteria“. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2022. http://dx.doi.org/10.7860/jcdr/2022/55467.16258.
Der volle Inhalt der QuelleLo, Gora, Assane Dieng, Awa Ba-Diallo, Marieme Samb, Alioune Tine, Serigne Mbaye Lo Ndiaye, Farba Karam et al. „Molecular Epidemiology of Carbapenem-resistant Acinetobacter baumannii Isolates in a Senegalese University Teaching Hospital“. Journal of Advances in Microbiology, 23.03.2022, 73–82. http://dx.doi.org/10.9734/jamb/2022/v22i330449.
Der volle Inhalt der QuelleFARAJZADEH SHEIKH, Ahmad, Mojtaba SHAHIN, Leili SHOKOOHIZADEH, Fahimeh GHANBARI, Hamid SOLGI und Fereshteh SHAHCHERAGHI. „Emerge of NDM-1-Producing Multidrug-Resistant Pseudomonas aeruginosa and Co-harboring of Carbapenemase Genes in South of Iran“. Iranian Journal of Public Health, 15.06.2020. http://dx.doi.org/10.18502/ijph.v49i5.3214.
Der volle Inhalt der QuelleSalvia, Thounaojam, Laishram Shantikumar Singh, Rachana Khati, Kalaiarasan Ellappan, Karma G. Dolma und Om Prakash Dhakal. „Molecular characterization of extended-spectrum beta-lactamases and carbapenemases producing Enterobacteriaceae isolated from North Eastern region of India“. Journal of Laboratory Physicians, 23.01.2024, 1–8. http://dx.doi.org/10.25259/jlp-2023-5-17-(1795).
Der volle Inhalt der QuelleSabour, Sarah, Katie Bantle, Amelia Bhatnagar, Jennifer Y. Huang, Angela Biggs, Janine Bodnar, Jennifer L. Dale et al. „Descriptive analysis of targeted carbapenemase genes and antibiotic susceptibility profiles among carbapenem-resistant Acinetobacter baumannii tested in the Antimicrobial Resistance Laboratory Network—United States, 2017–2020“. Microbiology Spectrum, 04.01.2024. http://dx.doi.org/10.1128/spectrum.02828-23.
Der volle Inhalt der QuelleSóki, József, Uwe Lang, Ulrike Schumacher, István Nagy, Ágnes Berényi, Tamás Fehér, Katalin Burián und Elisabeth Nagy. „A novel Bacteroides metallo-β-lactamase (MBL) and its gene (crxA) in Bacteroides xylanisolvens revealed by genomic sequencing and functional analysis“. Journal of Antimicrobial Chemotherapy, 17.03.2022. http://dx.doi.org/10.1093/jac/dkac088.
Der volle Inhalt der Quelle