Auswahl der wissenschaftlichen Literatur zum Thema „Metallic lithium“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Metallic lithium" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Metallic lithium"

1

Zhang, Rui, An Li, Lei Zhang und Xun Yong Jiang. „Research on Metallic Silicon Used as Lithium Ion Battery Anode Material“. Advanced Materials Research 463-464 (Februar 2012): 764–68. http://dx.doi.org/10.4028/www.scientific.net/amr.463-464.764.

Der volle Inhalt der Quelle
Annotation:
In this research, metallic silicon was used as anode material of lithium ion batteries. Electrochemical lithium storage property of metallic silicon was studied which is compared with pure silicon. The results show that for different content of electrical conductors in electrode, the first discharging and charging specific capacity of metallic silicon is similar to pure silicon. The attenuation on capacity of metallic silicon is slower than pure silicon. The lithium storage mechanism of metallic silicon is similar with pure silicon. The testing results of metallic silicon under different charging and discharging rate show that the lithium storage property of metallic silicon is better under lower charging and discharging rate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shi, Lei, Zou Peng, Ping Ning, Xin Sun, Kai Li, Huan Zhang und Tao Qu. „Clean and Efficient Recovery of Lithium from Al-Li Alloys via Vacuum Fractional Condensation“. Separations 10, Nr. 7 (26.06.2023): 374. http://dx.doi.org/10.3390/separations10070374.

Der volle Inhalt der Quelle
Annotation:
Al-Li alloys are ideal structural materials for the aerospace industry. However, an increasing number of Al-Li alloys have reached the end of their service life and must be recycled. Unfortunately, when vacuum distillation is used to separate Al-Li alloys, metallic lithium is difficult to condense and collect. Therefore, theoretical and experimental research on lithium condensation conditions under vacuum and vacuum distillation and condensation of Al-Li alloy to prepare metallic lithium were carried out. The results show that the optimal condensation temperature range for lithium is between 523 and 560 K. More than 99.5% metallic lithium and more than 99.97% aluminum were obtained from the Al-7.87%wt Li alloy through vacuum distillation condensation. The direct yield of lithium was above 80%. This paper, therefore, provides a new and improved method for the preparation of metallic lithium.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Auborn, J. J., und Y. L. Barberio. „Lithium Intercalation Cells Without Metallic Lithium: and“. Journal of The Electrochemical Society 134, Nr. 3 (01.03.1987): 638–41. http://dx.doi.org/10.1149/1.2100521.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Park, Jesik, Jaeo Lee und C. K. Lee. „Synthesis of Lithium Thin Film by Electrodeposition from Ionic Liquid“. Applied Mechanics and Materials 217-219 (November 2012): 1049–52. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.1049.

Der volle Inhalt der Quelle
Annotation:
Synthesis of metallic lithium thin film was investigated from two ionic liquid of [EMIM]Tf2N and PP13Tf2N with LiTFSI as a lithium source. Cyclic voltammograms on Au electrode showed the possibility of the electrodeposition of metallic lithium, the reduction current in [EMIM]Tf2N was higher than the value in PP13Tf2N. The metallic lithium thin film could be synthesized on the Au electrode by the potentiostatic condition, which was confirmed by various analytical techniques including x-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. The lithium surface electrodeposited was uniformly without dendrite, any impurity was not detected except trace oxygen contaminated during handling for analyses.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Li, Wenjun, Hao Zheng, Geng Chu, Fei Luo, Jieyun Zheng, Dongdong Xiao, Xing Li et al. „Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation“. Faraday Discuss. 176 (2014): 109–24. http://dx.doi.org/10.1039/c4fd00124a.

Der volle Inhalt der Quelle
Annotation:
Rechargeable metallic lithium batteries are the ultimate solution to electrochemical storage due to their high theoretical energy densities. One of the key technological challenges is to control the morphology of metallic lithium electrode during electrochemical dissolution and deposition. Here we have investigated the morphology change of metallic lithium electrode after charging and discharging in nonaqueous batteries by ex situ SEM techniques from a top view. Formation of the hole structure after lithium dissolution and the filling of dendrite-like lithium into the holes has been observed for the first time. In addition, an in situ SEM investigation using an all-solid Li/Li2O/super aligned carbon nanotube set-up indicates that lithium ions could diffuse across through the surface oxide layer and grow lithium dendrites after applying an external electric field. The growth of lithium dendrites can be guided by electron flow when the formed lithium dendrite touches the carbon nanotube.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Manickam, M., und M. Takata. „Lithium intercalation cells LiMn2O4/LiTi2O4 without metallic lithium“. Journal of Power Sources 114, Nr. 2 (März 2003): 298–302. http://dx.doi.org/10.1016/s0378-7753(02)00586-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fauteux, D., und R. Koksbang. „Rechargeable lithium battery anodes: alternatives to metallic lithium“. Journal of Applied Electrochemistry 23, Nr. 1 (Januar 1993): 1–10. http://dx.doi.org/10.1007/bf00241568.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fu, Qiang Wei, und Xun Yong Jiang. „Lithium Storage Property of Metallic Silicon Treated by Mechanical Alloying“. Materials Science Forum 847 (März 2016): 29–32. http://dx.doi.org/10.4028/www.scientific.net/msf.847.29.

Der volle Inhalt der Quelle
Annotation:
Theoretical capacity of silicon is 4200mAhg-1, but pure silicon had huge volume change during lithium insertion, which reduces the cycle life of silicon. In this paper, pure silicon was replaced of metallic silicon to relieve volume effect. Metallic silicon contains some alloying elements which improve the conductivity of the electrode material. The elements in metallic silicon will relief the volume change of silicon substrate during lithium insertion/ de-lithiation process. Metallic silicon was treated by mechanical alloying (MA) which is an effective method to reduce particle sizes of metallic silicon. The results show that MA can improve cycle performance of metallic silicon. Metallic silicon treated by MA performs a better cycling performance compared with the unsettled materials and a higher discharge capacity in the first cycle.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Heilingbrunner, Andrea, und Gernot Stollhoff. „Abinitiocorrelation calculation for metallic lithium“. Journal of Chemical Physics 99, Nr. 9 (November 1993): 6799–809. http://dx.doi.org/10.1063/1.465823.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cheng, Hao, Yangjun Mao, Yunhao Lu, Peng Zhang, Jian Xie und Xinbing Zhao. „Trace fluorinated-carbon-nanotube-induced lithium dendrite elimination for high-performance lithium–oxygen cells“. Nanoscale 12, Nr. 5 (2020): 3424–34. http://dx.doi.org/10.1039/c9nr09749j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Metallic lithium"

1

Deavin, Oliver. „Thermodynamic tuning of lithium borohydride using various metallic sources“. Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/50398/.

Der volle Inhalt der Quelle
Annotation:
Lithium borohydride (LiBH4) has been shown great interest as a hydrogen storage material owing to its large hydrogen storage capacity of 18.5 wt%, but unfortunately to release the vast majority of the stored hydrogen requires temperatures in excess of 600 °c. To improve the temperature at which LiBH4 decomposes, and to improve its poor reversibility, a process known as thermodynamic tuning can be used. Thermodynamic tuning involves creating new, more favourable reaction pathways and in this work the addition of nickel, silicon, iron and cobalt were investigated. The addition of nickel in the LiBH4:2Ni system was shown to be the most effective in reducing the decomposition temperature to occur below 300 °c while also improving reversibility to occur in the solid state at temperatures of 250 °c or lower. The addition of silicon was found to not be effective in reducing the decomposition temperature of LiBH4 even though it was thermodynamically predicted to do so. Attempts to improve the kinetics of the system with a titanium catalyst only showed an improvement when large quantities of the catalyst were used implying that the reaction with the catalyst was the driving force. Addition of both cobalt and iron were also effective in reducing the temperature of LiBH4 decomposition, in a similar reaction to the nickel systems by forming borides. The mass loss in the solid state (< 300 °c) was, however, inferior to the addition of nickel.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ma, Miaomiao. „Layered LiMn0.4Ni0.4Co0.2O2 as cathode for lithium batteries“. Diss., Online access via UMI:, 2005.

Den vollen Inhalt der Quelle finden
Annotation:
Thesis (Ph. D.)--State University of New York at Binghamton, Materials Science, 2005.
Numerals in chemical formula in title are "subscript" in t.p. of printed version. Includes bibliographical references.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Viik, Rickard. „Surface layer formation on the surfaces of metallic lithium, copper and iron“. Thesis, Uppsala universitet, Molekyl- och kondenserade materiens fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-257571.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Drury, William James. „Quantitative microstructural and fractographic characterization of AE-Li/FP metal matrix composite“. Thesis, Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/19958.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bonatti, Colin. „Testing and modeling of the viscoplastic and fracture behavior of metallic foils used in lithium-ion batteries“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101332.

Der volle Inhalt der Quelle
Annotation:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 37-39).
Aluminum 1235-H18 foils with sub-micron grain dimensions are often used as current collectors in Li-ion batteries. Due to their contribution to the structural integrity of batteries under impact loading, their plastic and fracture response is investigated in detail. Using a novel micro-tensile testing device with a piezoelectric actuator, dogbone specimens with a 1.25 mm wide and 5.7 mm long gage section are tested for three different in-plane material orientations and for strain rates ranging from 10-5/s to 10-2/s. It was found that the stress at a proof strain of 2% increased by about 25% from 160MPa to 200MPa within this range of strain rates. Furthermore, pronounced inplane anisotropy is observed as reflected by Lankford ratios variations from 0.2 to 1.5 .A material model is proposed which borrows elements of the anisotropic Yld2000-2d plasticity model and integrates these into a basic viscoplasticity framework that assumes the multiplicative decomposition of the equivalent stress into a strain and strain rate dependent contributions. The an isotropic fracture response is characterized for a strain rate of 10-3 /s using notched tension and Hasek punch experiments. It is found that a simple stress state independent version of the anisotropic MMC fracture initiation model provides a reasonable approximation of the observed experimental results.
by Colin Bonatti.
S.M.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cluzeau, Benoît. „Développement de batteries lithium-ion « Tout solide » pour véhicules électriques“. Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3071.

Der volle Inhalt der Quelle
Annotation:
L'amélioration continue des performances des batteries Li-ion au cours des deux dernières décennies a permis l'introduction de nombreuses automobiles électriques sur le marché. Cependant, les demandes concernant la sécurité, l'autonomie et la charge rapide des véhicules nécessitent le développement de nouvelles technologies plus performantes.C'est dans cette optique qu'a été fondé le projet RAISE 2024 dans lequel s'inscrit cette thèse. Cette collaboration entre SAFT, ARKEMA et l'université de Pau et des pays de l'Adour vise à développer une batterie à électrolyte solide. Le développement d'un tel système possède un objectif double, à savoir le renforcement de la sécurité lors du fonctionnement des batteries, et l'utilisation de nouveaux matériaux d'électrode de plus forte capacité comme le lithium métal.Pour atteindre cet objectif, deux électrolytes ont été étudiés dans cette thèse. Le premier est constitué d'un électrolyte polymère gélifié obtenu par la réticulation d'un polymère mélangé à un électrolyte liquide. Il permet d'obtenir de bonnes performances en matière de conductivité ionique à température ambiante (10-3 S/cm) et son utilisation en batterie a permis de réaliser plus de 700 cycles avec une rétention de capacité supérieure à 80%. L'impact de la matrice polymère sur les performances a été étudié à travers une série de tests électrochimiques et d'analyse de surface (XPS). Enfin, les tests de sécurité effectués sur des cellules contenant cet électrolyte permettent de mettre en évidence une diminution significative de la quantité d'énergie libérée.Enfin, un deuxième système conducteur ionique a été étudié. Il se présente sous la forme d'une membrane polymère, plastifiée avec un liquide ionique et un solvant. Cette membrane permet d'obtenir une conductivité ionique supérieure à 10-4 S/cm à température ambiante. Couplée à un électrolyte gélifié dans les électrodes pour favoriser le contact au niveau des interfaces, la membrane présente une résistance élevée à la formation de dendrites de lithium. Son utilisation dans une cellule composée d'une électrode positive de NMC 811 et d'une électrode négative de lithium métal a permis de réaliser plus de 200 cycles à un régime de C/5, D/2 avant de perdre 20% de la capacité initiale
Improvements in the performances of Li-ion batteries in the past two decades, has enabled the introduction of many electric cars on the market. However, demands regarding the safety, autonomy, and fast charging require the development of new and more efficient technologies.It was in this context that the RAISE 2024 project, in which this thesis is part of, was founded. This collaboration between ARKEMA, SAFT and the University of Pau and Adour Countries aims to develop a lithium ion battery with a solid electrolyte. The development of such a system has a double objective: the reinforcement of safety during operation, and the use of new electrode materials with higher capacity such as metallic lithium.To achieve this objective, two electrolytes were studied in this thesis. The first consists of a gelled electrolyte obtained by crosslinking of a polymer matrix. It provides good performance in terms of ionic conductivity at room temperature (10-3 S/cm). More than 700 cycles were achieved with this electrolyte in a battery cell before reaching 80% of initial capacity. The impact of polymer matrix on performance was studied through a series of electrochemical tests and surface analysis (XPS). Finally, safety tests (nail penetration) carried out on cells filled with this electrolyte show a significant reduction of energy released.Finally, a second ionic conductor was studied. It comes in the form of a polymer membrane, plasticized with an ionic liquid and a solvent. This membrane exhibits ionic conductivity above 10-4 S/cm at room temperature. Coupled with a gel electrolyte in electrodes to improve interfacial contact, the membrane shows a high resistance to lithium dendrites. A cell using this electrolyte and composed of NMC 811 as positive electrode and lithium metal as negative electrode performed 200 cycles at a rate of C/5, D/2 before losing 20% of its initial capacity
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Santoki, Jay [Verfasser], und B. [Akademischer Betreuer] Nestler. „Phase-field modeling on the diffusion-driven processes in metallic conductors and lithium-ion batteries / Jay Santoki ; Betreuer: B. Nestler“. Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1225401070/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Xu, Chunbao. „Continuous and batch hydrothermal synthesis of metal oxide nanoparticles and metal oxide-activated carbon nanocomposites“. Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07302006-231517/.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--Chemical and Biomolecular Engineering, Georgia Institute of Technology, 2007.
Teja, Amyn, Committee Chair ; Kohl, Paul, Committee Member ; Liu, Meilin, Committee Member ; Nair,Sankar, Committee Member ; Rousseau, Ronald, Committee Member.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chaumont-Olive, Pauline. „Synthèse et développement de la réactivité des triorganozincates de lithium chiraux en addition nucléophile énantiosélective et application à la synthèse de produits bioactifs“. Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR069/document.

Der volle Inhalt der Quelle
Annotation:
Le développement de méthodes de synthèse asymétriques a largement été exploré au cours des vingt dernières années et en particulier par le biais de réactifs organométalliques. Bien que ces processus mènent à d’excellents résultats en terme d’énantiodiscrimination, l’objectif de cette thèse a été de développer de nouveaux outils de synthèse peu onéreux, respectueux des fonctions sensibles environantes et permettant l’accès aux composés attendus avec de bons rendements et excès énantiomériques. Dans cet optique, des triorganozincates de lithium chiraux ont été étudiés. Des méthodes d’alkylation et d’arylation 1,2 énantiosélectives d’aldéhydes, comportant comme partenaire chiral la (R)-N-(2-iso-butoxybenzyl)-1- phenyléthanamine, ont ainsi été développées et mises en application sur divers aldéhydes. Les alcools secondaires correspondants ont été obtenus avec de bons rendements (jusqu'à 83%) et d’excellents excès énantiomériques (jusqu'à 99%). Ces procédures ont ensuite été appliquées à la synthèse asymétrique de produits naturels et/ou bioactifs tels que la Spiromastilactone A, la (R)-Néobénodine et la (R)-Orphénadrine. Par ailleurs, la synthèse de nouveaux ligands de type amino-alcool a été développée dans le but ultime de désymétriser des substrats de type imines cycliques
The development of new asymetric methodologies have been widely explored during the last twenty years and in particular through organometallic reagents. Although these processes lead to excellent results in terms of enantiodiscrimination, the goal of this thesis was to develop new tools: cheap, chemoselective and allowing the access to the desired compounds with high yields and enantiomeric excesses. In this context, chiral lithium triorganozincates have been studied. Enantioselective nucleophilic 1,2 alkylation and arylation of aldehydes reactions, including (R)-N-(2-iso-butoxybenzyl)-1-phenylethanamine as the chiral ligand, have been optimized toward various aldehydes. The expected secondary chiral alcohols have been obtained with good yields (up to 83%) and high enantiomeric excesses (up to 99%).These processes have been then applied to the asymmetric synthesis of naturals and/or bioactive compounds as Spiromastilactone A, (R)-Neobenodine and (R)-Orphenadrine. Finally, the access to new amino-alcohols have been developed with the ultimate goal to engage those species as the chiral partner when reacting chiral lithium zincates with imines
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ren, Yu. „Applications of ordered mesoporous metal oxides : energy storage, adsorption, and catalysis“. Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1705.

Der volle Inhalt der Quelle
Annotation:
The experimental data and results demonstrated here illustrate the preparation and application of mesoporous metal oxides in energy storage, adsorption, and catalysis. First, a new method of controlling the pore size and wall thickness of mesoporous silica was developed by controlling the calcination temperature. A series of such silica were used as hard templates to prepare the mesoporous metal oxide Co₃O₄. Using other methods, such as varying the silica template hydrothermal treatment temperature, using colloid silica, varying the materials ratio etc., a series of mesoporous β-MnO₂ with different pore size and wall thickness were prepared. By using these materials it has been possible to explore the influence of pore size and wall thickness on the rate of lithium intercalation into mesoporous electrode. There is intense interest in lithium intercalation into titanates due to their potential advantages (safety, rate) replacing graphite for new generation Li-ion battery. After the preparation of an ordered 3D mesoporous anatase the lithium intercalation as anode material has been investigated. To the best of our knowledge, there are no reports of ordered crystalline mesoporous metal oxides with microporous walls. Here, for the first time, the preparation and characterization of three dimensional ordered crystalline mesoporous α-MnO₂ with microporous wall was described, in which K+ and KIT-6 mesoporous silica act to template the micropores and mesopores, respectively. It was used as a cathode material for Li-ion battery. Its adsorption behavior and magnetic property was also surveyed. Following this we described the preparation and characterization of mesoporous CuO and reduced Cu[subscript(x)]O, and demonstrated their application in NO adsorption and delivery. Finally a series of crystalline mesoporous metal oxides were prepared and evaluated as catalysts for the CO oxidation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Metallic lithium"

1

Innovative Antriebe 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783181022894.

Der volle Inhalt der Quelle
Annotation:
Rechargeable Energy Storage Technologies for Automotive Applications Abstract This paper provides an extended summary of the available relevant rechargeable energy storage electrode materials that can be used for hybrid, plugin and battery electric vehicles. The considered technologies are the existing lithium-ion batteries and the next generation technologies such as lithium sulfur, solid state, metal-air, high voltage materials, metalair and sodium based. This analysis gives a clear overview of the battery potential and characteristics in terms of energy, power, lifetime, cost and finally the technical hurdles. Inhalt Seite Vorwort 1 Alternative Energiespeicher – und Wandler S. Hävemeier, Neue Zelltechnologien und die Chance einer deutschen 3 M. Hackmann, Zellproduktion – Betrachtung von Technologie, Wirtschaft- R. Stanek lichkeit und dem Standort Deutschland N. Omar, Rechargeable Energy Storage Technologies for 7 R. Gopalakrishnan Automotive Applications – Present and Future ...
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Metallic lithium"

1

Ross, Robert B. „Lithium Li“. In Metallic Materials Specification Handbook, 209–10. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3482-2_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sugiyama, G., G. Zerah und B. J. Alder. „Metallic Lithium by Quantum Monte Carlo“. In Strongly Coupled Plasma Physics, 229–38. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1891-0_22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hassan, Afaq, Saima Nazir, M. Sagir, Tausif Ahmad und M. B. Tahir. „Metallic Li Anode: An Introduction“. In Lithium-Sulfur Batteries: Key Parameters, Recent Advances, Challenges and Applications, 169–86. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-2796-8_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhao, Changtai, Kieran Doyle-Davis und Xueliang Sun. „Lithium Batteries Application of Atomically Dispersed Metallic Materials“. In Atomically Dispersed Metallic Materials for Electrochemical Energy Technologies, 307–29. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003153436-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Harrison-Marchand, Anne, Nicolas Duguet, Gabriella Barozzino-Consiglio, Hassan Oulyadi und Jacques Maddaluno. „Dynamics of the Lithium Amide/Alkyllithium Interactions: Mixed Dimers and Beyond“. In Organo-di-Metallic Compounds (or Reagents), 43–61. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/3418_2014_75.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Song, Ling Yue, Hui Li und Jinglong Liang. „Thermodynamic Analysis of the Recovery of Metallic Mn from Waste Lithium Manganese Battery Using the Molten Salt Method“. In The Minerals, Metals & Materials Series, 1539–47. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50349-8_133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhang, Shaoguang, Wen-Xiong Zhang und Zhenfeng Xi. „Organo-di-Lithio Reagents: Cooperative Effect and Synthetic Applications“. In Organo-di-Metallic Compounds (or Reagents), 1–41. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/3418_2013_71.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Vogel, Katrin. „Ein Stoff macht Zukunft. Zum sozialen Leben von Lithium am Salar de Uyuni, Bolivien“. In Kritische Metalle in der Großen Transformation, 197–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44839-7_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Saha, B., R. J. H. Wanhill, N. Eswara Prasad, G. Gouda und K. Tamilmani. „Airworthiness Certification of Metallic Materials“. In Aluminum-lithium Alloys, 537–54. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-401698-9.00016-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

„Hydrogen in Aluminum–Lithium Alloys“. In Advances in Metallic Alloys, 37–61. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315369525-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Metallic lithium"

1

Saager, Stefan. „PVD of Metallic Lithium Layers and Lithiated Silicon Layers for High-Performance Anodes in Lithium Ion Batteries“. In 65th Society of Vacuum Coaters Annual Technical Conference. Society of Vacuum Coaters, 2022. http://dx.doi.org/10.14332/svc22.proc.0008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lutey, Adrian H. A., Alessandro Fortunato, Alessandro Ascari, Simone Carmignato und Leonardo Orazi. „Pulsed Laser Ablation of Lithium Ion Battery Electrodes“. In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-3967.

Der volle Inhalt der Quelle
Annotation:
Lithium ion battery electrodes have been exposed to 1064nm nanosecond pulsed laser irradiation with pulse energy in the range 8μJ – 1mJ and fluence in the range 3.2 – 395J/cm2. Experiments have been executed at translational velocities of 100mm/s and 1m/s, allowing individual characterization of the graphite and lithium metal oxide coatings of the copper anode and aluminum cathode, respectively, as well as that of the complete multi-layer structures. A 3D optical profiler has been utilized to measure the incision depth of all samples and allow observation of the process quality. At high velocity, partial or complete removal of the upper coating layers was achieved with little or no impact on the underlying metallic layers. At low velocity, complete cuts were possible under certain conditions, with process efficiency found to be almost entirely governed by the response of the metallic layers. While the coating layers of each electrode exhibited different responses than the metallic layer, the influence of the latter was found to be dominant for cutting operations. Shorter pulses with fluence in the range 30 – 60J/cm2 were found to lead to optimum process outcomes with the employed laser source.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zhang, Qifeng, und Yi Ding. „A New Solid Electrolyte with A High Lithium Ionic Conductivity for Solid-State Lithium-Ion Batteries“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0519.

Der volle Inhalt der Quelle
Annotation:
<div class="section abstract"><div class="htmlview paragraph">Solid-state lithium-ion batteries that use a solid electrolyte may potentially operate at wide temperatures and provide satisfactory safety. Moreover, the use of a solid electrolyte, which blocks the formation of lithium dendrites, allows batteries to use metallic lithium for the anode, enabling the batteries gain an energy density significantly higher than that of traditional lithium-ion batteries. Solid electrolytes play a role of conducting lithium ions and are the core of solid-state lithium-ion batteries. However, the development of solid lithium electrolytes towards a high lithium ionic conductivity, good chemical and electrochemical stability and scalable manufacturing method has been challenging. We report a new material composed of nitrogen-doped lithium metaphosphate, denoted as NLiPO<sub>3</sub>. The material delivers a lithium ionic conductivity on the order of 10<sup>-4</sup> S/cm at room temperature, which is about two orders of magnitude higher than that of conventional LiPON – the electrolyte currently used in solid-state thin-film lithium-ion batteries, and is comparable or generally higher than that of most of the existing solid electrolytes. The high lithium ionic conductivity was attributed to the formation of <span class="formula inline"><math display="inline" id="M1"><mi mathvariant="normal">P</mi><mo>−</mo><mi mathvariant="normal">N</mi><mo>&lt;</mo><mtable displaystyle="true"><mtr><mtd><mi mathvariant="normal">P</mi></mtd></mtr><mtr><mtd><mi mathvariant="normal">P</mi></mtd></mtr></mtable></math></span> bonds in amorphous LiPO<sub>3</sub>. The material is stable in ambient environment over a wide range of temperature and can be handled and processed easily. These merits make the material a promising electrolyte for solid-state lithium-ion battery applications.</div></div>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Das, Susanta K., und Abhijit Sarkar. „Synthesis and Performance Evaluation of a Solid Electrolyte and Air Cathode for a Rechargeable Lithium-Air Battery“. In ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fuelcell2016-59448.

Der volle Inhalt der Quelle
Annotation:
A tri-layered solid electrolyte and an oxygen permeable solid air cathode for lithium-air battery cells were synthesized in this investigation. Detailed fabrication procedures for solid electrolyte, air cathode and the assembly of real-world lithium-air battery cell are described. Fabrication of real-world lithium-air button cells was performed using the synthesized tri-layered solid electrolyte, an oxygen permeable air cathode, and a metallic lithium anode. The lithium-air button cells were tested under dry air with 0.1mA∼0.2mA discharge/charge current at different temperatures. It was found that interfacial contact resistances play an important role in Li-air battery cell performance. Experimental results suggested that the lack of robust interfacial contact among solid electrolyte, air cathode and lithium metal anode were the primary factors for the cell’s high internal resistances. It was also found that once the cell internal resistance issues were resolved, the discharge curve of the battery cell was much smoother and the cell was able to discharge at above 2.0V for up to 40 hours. It indicated that in order to have better performing lithium-air battery cell, interfacial contact resistances issue must be resolved very efficiently.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Azam, Reem, Tasneem ElMakki, Sifani Zavahir, Zubair Ahmad, Gago Guillermo Hijós und Dong Suk Han. „Lithium capture in Seawater Reverse Osmosis (SWRO) Brine using membrane-based Capacitive Deionization (MCDI) System“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0013.

Der volle Inhalt der Quelle
Annotation:
Lithium-battery based industries including vehicles, electronics, fusion and thermonuclear, consume lithium rapidly, which raises the need for developing a lithium recovery system. Lithium global market consumption in 2016 was reported to be 35% in batteries manufacturing. The total content of lithium in seawater and oceans is estimated at 2.5 × 1014 kg, with an average concentration of 0.17 mg/L. Salt lakes contain 1,000–3,000 mg/L of lithium, while geothermal water up to 15 mg/L. In 2020, the US Geological Survey (USGS) reported that the total Li resource is about 80 million ton. In nature, lithium does not exist as pure metal owing to its high reactivity with water, air, and nitrogen. Commonly lithium is mined from metallic minerals from earth or brine salt marsh and used in various fields in the form of lithium carbonate (60%), lithium hydroxide (23%), lithium metal (5%), lithium chloride (3%), and butyl lithium (4%). The extraction of 1 kg of lithium needs around 5.3 kg of lithium carbonate. The amount required to produce lithium-ion batteries (LIB) for cell phones or electric cars is estimated to be 0.8 kg/s of lithium metal, which is equivalent to 25,000 tons per year. As we use this much of LIB, this will end up having significant amounts of lithium battery waste, thus recovering LIBS and using it as cathode electrode in MCDI is an excellent way with benefit. This work proposes to efficiently utilize seawater reverse osmosis (SWRO) brine as a medium to recover lithium from seawater followed by its selective capture of lithium element using SLIB as MCDI cathode electrode material. Thus, these attempts could be closer to an improved and more effective loop of lithium targeted capture-reuse system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Barakat, Elsie, Maria-Pilar Bernal, Roland Salut und Fadi Baida. „Metallic Annular Apertures Arrays filled by Lithium Niobate to Enhance Non-Linear Conversion: Theory and Fabrication“. In Frontiers in Optics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/fio.2011.fthp6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bo, Luyu, Jiali Li, Xinyu Zhang, Teng Li und Zhenhua Tian. „Investigation of Water Effects on Surface Acoustic Wave Transmission“. In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-96673.

Der volle Inhalt der Quelle
Annotation:
Abstract Corrosion is a typical damage type in metallic structures. Free water on metallic structures can gradually lead to corrosion damage. In this study, we investigated free water sensing based on surface acoustic waves (SAWs). The fabricated SAW device consists of two interdigital transducers (IDTs) in a pitch-catch configuration on a lithium niobate (LiNbO3) piezoelectric substrate. Finite element simulations of SAWs generated by IDTs and SAW-droplet interaction were performed. To unveil the effects of a water droplet on SAWs and understand the mechanism of our SAW device, we simulated multiple cases with different volumes of water droplets. The simulation results show that the transmission amplitude gradually decreases with the water volume increase. A proof-of-concept experiment was performed by using a fabricated SAW device to detect a water droplet on the substrate surface. The experimental results show a similar trend as that of the finite element simulations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhao, Nanzhu, Wei Li, Wayne W. Cai und Jeffrey A. Abell. „A Method to Study Fatigue Life of Ultrasonically Welded Lithium-Ion Battery Tab Joints Using Electrical Resistance“. In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4159.

Der volle Inhalt der Quelle
Annotation:
The fatigue life of ultrasonically welded lithium-ion battery tab joints is studied for electric and hybrid-electric vehicle applications. Similar to metallic materials, the electrical resistance of these ultrasonic welds strongly depends on their quality and the crack growth under fatigue loading. A fatigue life model is developed using the continuum damage mechanics formulation, where the damage variable is defined using the electrical resistance of ultrasonic welds. Fatigue tests under various loading conditions are conducted with aluminum-copper battery tab joints made under various ultrasonic welding conditions. It is shown that the electrical resistance of ultrasonic welds increases characteristically during the fatigue life test. There is a threshold for the damage variable, after which the ultrasound welds fail rapidly. Due to welding process variation, welds made under the same process settings may have different fatigue performance. This quality difference may be classified using two parameters estimated from the fatigue life model. By monitoring the electrical resistance, it is possible to predict the remaining life of ultrasonically welded battery tab joints using only a portion of the fatigue test data. The prediction is more reliable by incorporating data beyond the half-life of the joints during the fatigue test.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Miley, G. H., C. Castano, A. Lipson, S. O. Kim und N. Luo. „Progress in Development of a Low Energy Reaction Cell for Distributed Power Applications“. In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22148.

Der volle Inhalt der Quelle
Annotation:
Power units using Low Energy Nuclear Reactions (LENRs) potentially offer a radical new approach to power units that could provide distributed power units in the 1–50 kW range. As described in prior ICONE papers [9, 23] these cells employ thin metallic film cathodes (order of 500 Å, using variously Ni, Pd and Ti) with electrolytes such as 0.5–1 molar lithium sulfates in light water. Power densities exceeding 10 W/cc in the films have been achieved. An ultimate goal is to incorporate this thin-film technology into a “tightly packed” cell design where the film material occupies ∼ 20% of the total volume. If this is achieved, power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications involving distributed power. Recent studies reported here have concentrated on new electrode designs intended to maximize the proton loading in the films while maintaining the required proton and electron current densities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kocer, Bilge, und Lisa Mauck Weiland. „Experimental Characterization of Direct Assembly Process Based Ionic Polymer Transducers in Sensing“. In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5009.

Der volle Inhalt der Quelle
Annotation:
Ionic Polymer Transducers (IPTs) are electroactive ion exchange membranes that are plated with metals which provide a capacitive property appropriate for sensor/actuator applications. IPTs bend when a voltage difference is applied across the surfaces of the transducer performing actuation behavior and produce current when they are deformed exhibiting sensing behavior. However, the response of the IPT as an actuator or as a sensor differs from each other since the mechanism responsible from actuation and sensing are different. Existing research in this field is mostly focused on actuation behavior. Therefore, in this study emphasis is on sensing where the IPTs have been prepared via the Direct Assembly Process (DAP). The DAP is selected because it enables experimental control over the electrode architecture, which may ultimately be exercised to explore the underlying physics responsible for sensing. Five lithium exchanged transducers are prepared with 1-ethyl-3 methylimidazolium trifluoromethanesulfonate (EmI-Tf) ionic liquid as the diluent, and high surface area RuO2 as the metallic powder. The IPTs are then cantilevered and subject to step displacements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Metallic lithium"

1

Colon-Mercado, H., D. Babineau, M. Elvington, B. Garcia-Diaz, J. Teprovich und A. Vaquer. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket. Office of Scientific and Technical Information (OSTI), Oktober 2015. http://dx.doi.org/10.2172/1224027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Liventseva, Hanna. THE MINERAL RESOURCES OF UKRAINE. Ilustre Colegio Oficial de Geólogos, Mai 2022. http://dx.doi.org/10.21028/hl.2022.05.17.

Der volle Inhalt der Quelle
Annotation:
Ukraine is one of the leading countries of the world in a wide range of minerals. Although it covers only 0.4% of the Earth’s surface, contains about 5% of the world’s mineral resources. It ranks top-10 of the world for several raw materials (metallic and non-metallic) such as titanium, ball clays, Fe-Mn & Fe-Si-Mn alloys and gallium. Lithium, graphite or magnesium, among others, are also present in Ukraine. The abundance and diversity of minerals and metals is due to the complexity and variety of the Ukrainian geology. This article presents the main metallic and non-metallic mineral resources of Ukraine and its geological context.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Qu, Deyang. Developing an In-situ Formed Dynamic Protection Layer to Mitigate Lithium Interface Shifting: Preventing Dendrite Formation on Metallic Lithium Surface to Facilitate Long Cycle Life of Lithium Solid-State Batteries. Office of Scientific and Technical Information (OSTI), Dezember 2022. http://dx.doi.org/10.2172/1907035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie