Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Metal-support interactions.

Zeitschriftenartikel zum Thema „Metal-support interactions“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Metal-support interactions" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Tauster, S. J. „Strong metal-support interactions“. Accounts of Chemical Research 20, Nr. 11 (November 1987): 389–94. http://dx.doi.org/10.1021/ar00143a001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

BURCH, R. „Metal sulfide-support interactions“. Journal of Catalysis 97, Nr. 2 (Februar 1986): 385–89. http://dx.doi.org/10.1016/0021-9517(86)90010-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Du, Xiaorui, Hailian Tang und Botao Qiao. „Oxidative Strong Metal–Support Interactions“. Catalysts 11, Nr. 8 (25.07.2021): 896. http://dx.doi.org/10.3390/catal11080896.

Der volle Inhalt der Quelle
Annotation:
The discoveries and development of the oxidative strong metal–support interaction (OMSI) phenomena in recent years not only promote new and deeper understanding of strong metal–support interaction (SMSI) but also open an alternative way to develop supported heterogeneous catalysts with better performance. In this review, the brief history as well as the definition of OMSI and its difference from classical SMSI are described. The identification of OMSI and the corresponding characterization methods are expounded. Furthermore, the application of OMSI in enhancing catalyst performance, and the influence of OMSI in inspiring discoveries of new types of SMSI are discussed. Finally, a brief summary is presented and some prospects are proposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

del Arco, M., und V. Rives. „Metal-support and metal oxide-support interactions in Cu/TiO2“. Reaction Kinetics and Catalysis Letters 31, Nr. 1 (März 1986): 239–44. http://dx.doi.org/10.1007/bf02062539.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Guenin, M., P. N. Da Silva und R. Frety. „Influence of chlorine towards metal-support and metal-sulphur support interactions“. Applied Catalysis 27, Nr. 2 (Januar 1986): 313–23. http://dx.doi.org/10.1016/s0166-9834(00)82927-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Douidah, A., P. Marécot, S. Szabo und J. Barbier. „Evaluation of the metal–support interactions“. Applied Catalysis A: General 225, Nr. 1-2 (Februar 2002): 21–31. http://dx.doi.org/10.1016/s0926-860x(01)00627-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nicole, J., D. Tsiplakides, C. Pliangos, X. E. Verykios, Ch Comninellis und C. G. Vayenas. „Electrochemical Promotion and Metal–Support Interactions“. Journal of Catalysis 204, Nr. 1 (November 2001): 23–34. http://dx.doi.org/10.1006/jcat.2001.3360.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

BADYAL, J. P. S. „ChemInform Abstract: Strong Metal-Support Interactions“. ChemInform 25, Nr. 2 (19.08.2010): no. http://dx.doi.org/10.1002/chin.199402301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Li, Yangyang, Yunshang Zhang, Kun Qian und Weixin Huang. „Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts“. ACS Catalysis 12, Nr. 2 (06.01.2022): 1268–87. http://dx.doi.org/10.1021/acscatal.1c04854.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Okamoto, Yasuaki, Takeshi Kubota, Yoshiharu Ohto und Saburo Nasu. „Metal Oxide−Support Interactions in Fe/ZrO2Catalysts“. Journal of Physical Chemistry B 104, Nr. 35 (September 2000): 8462–70. http://dx.doi.org/10.1021/jp994122t.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Huang, Yuhui, Rui Zou, Yanjun Lin und Chao Lu. „Electronic Metal–Support Interactions for Electrochemiluminescence Signal Amplification“. Analytical Chemistry 93, Nr. 32 (04.08.2021): 11291–97. http://dx.doi.org/10.1021/acs.analchem.1c02423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Linsmeier, Ch, und E. Taglauer. „Strong metal–support interactions on rhodium model catalysts“. Applied Catalysis A: General 391, Nr. 1-2 (Januar 2011): 175–86. http://dx.doi.org/10.1016/j.apcata.2010.07.051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Fujiwara, Kakeru, Kikuo Okuyama und Sotiris E. Pratsinis. „Metal–support interactions in catalysts for environmental remediation“. Environmental Science: Nano 4, Nr. 11 (2017): 2076–92. http://dx.doi.org/10.1039/c7en00678k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Hu, Pingping, Zhiwei Huang, Zakariae Amghouz, Michiel Makkee, Fei Xu, Freek Kapteijn, Alla Dikhtiarenko, Yaxin Chen, Xiao Gu und Xingfu Tang. „Electronic Metal-Support Interactions in Single-Atom Catalysts“. Angewandte Chemie 126, Nr. 13 (05.03.2014): 3486–89. http://dx.doi.org/10.1002/ange.201309248.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Hu, Pingping, Zhiwei Huang, Zakariae Amghouz, Michiel Makkee, Fei Xu, Freek Kapteijn, Alla Dikhtiarenko, Yaxin Chen, Xiao Gu und Xingfu Tang. „Electronic Metal-Support Interactions in Single-Atom Catalysts“. Angewandte Chemie International Edition 53, Nr. 13 (05.03.2014): 3418–21. http://dx.doi.org/10.1002/anie.201309248.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Liu, Jingyue Jimmy. „Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts“. ChemCatChem 3, Nr. 6 (07.06.2011): 934–48. http://dx.doi.org/10.1002/cctc.201100090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Tang, Hailian, Yang Su, Yalin Guo, Leilei Zhang, Tianbo Li, Ketao Zang, Fei Liu et al. „Oxidative strong metal–support interactions (OMSI) of supported platinum-group metal catalysts“. Chemical Science 9, Nr. 32 (2018): 6679–84. http://dx.doi.org/10.1039/c8sc01392f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Kubička, David, Narendra Kumar, Tapani Venäläinen, Hannu Karhu, Iva Kubičková, Heidi Österholm und Dmitry Yu Murzin. „Metal−Support Interactions in Zeolite-Supported Noble Metals: Influence of Metal Crystallites on the Support Acidity“. Journal of Physical Chemistry B 110, Nr. 10 (März 2006): 4937–46. http://dx.doi.org/10.1021/jp055754k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Guo, Yu, und Ya-Wen Zhang. „Metal Clusters Dispersed on Oxide Supports: Preparation Methods and Metal-Support Interactions“. Topics in Catalysis 61, Nr. 9-11 (15.05.2018): 855–74. http://dx.doi.org/10.1007/s11244-018-0957-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Tang, Hailian, Jiake Wei, Fei Liu, Botao Qiao, Xiaoli Pan, Lin Li, Jingyue Liu, Junhu Wang und Tao Zhang. „Strong Metal–Support Interactions between Gold Nanoparticles and Nonoxides“. Journal of the American Chemical Society 138, Nr. 1 (28.12.2015): 56–59. http://dx.doi.org/10.1021/jacs.5b11306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Vander Wal, Randall L., Thomas M. Ticich und Valerie E. Curtis. „Substrate–support interactions in metal-catalyzed carbon nanofiber growth“. Carbon 39, Nr. 15 (Dezember 2001): 2277–89. http://dx.doi.org/10.1016/s0008-6223(01)00047-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

BRAUNSCHWEIG, E. „Reversibility of strong metal-support interactions on Rh/TiO2“. Journal of Catalysis 118, Nr. 1 (Juli 1989): 227–37. http://dx.doi.org/10.1016/0021-9517(89)90313-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Puskas, Imre, Theo H. Fleisch, Jan B. Hall, Bernard L. Meyers und Robert T. Roginski. „Metal-support interactions in precipitated, magnesium-promoted cobaltsilica catalysts“. Journal of Catalysis 134, Nr. 2 (April 1992): 615–28. http://dx.doi.org/10.1016/0021-9517(92)90347-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Cargnello, M., P. Fornasiero und R. J. Gorte. „Opportunities for Tailoring Catalytic Properties Through Metal-Support Interactions“. Catalysis Letters 142, Nr. 9 (07.08.2012): 1043–48. http://dx.doi.org/10.1007/s10562-012-0883-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Campisi, Sebastiano, Carine Chan-Thaw und Alberto Villa. „Understanding Heteroatom-Mediated Metal–Support Interactions in Functionalized Carbons: A Perspective Review“. Applied Sciences 8, Nr. 7 (17.07.2018): 1159. http://dx.doi.org/10.3390/app8071159.

Der volle Inhalt der Quelle
Annotation:
Carbon-based materials show unique chemicophysical properties, and they have been successfully used in many catalytic processes, including the production of chemicals and energy. The introduction of heteroatoms (N, B, P, S) alters the electronic properties, often increasing the reactivity of the surface of nanocarbons. The functional groups on the carbons have been reported to be effective for anchoring metal nanoparticles. Although the interaction between functional groups and metal has been studied by various characterization techniques, theoretical models, and catalytic results, the role and nature of heteroatoms is still an object of discussion. The aim of this review is to elucidate the metal–heteroatoms interaction, providing an overview of the main experimental and theoretical outcomes about heteroatom-mediated metal–support interactions. Selected studies showing the effect of heteroatom–metal interaction in the liquid-phase alcohol oxidation will be also presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Luo, Zijie, Jia Wang, Wei Zhou und Junsheng Li. „Catalyst-Support Interactions Promoted Acidic Electrochemical Oxygen Evolution Catalysis: A Mini Review“. Molecules 28, Nr. 5 (28.02.2023): 2262. http://dx.doi.org/10.3390/molecules28052262.

Der volle Inhalt der Quelle
Annotation:
In the context of the growing human demand for green secondary energy sources, proton-exchange membrane water electrolysis (PEMWE) is necessary to meet the high-efficiency production of high-purity hydrogen required for proton-exchange membrane fuel cells (PEMFCs). The development of stable, efficient, and low-cost oxygen evolution reaction (OER) catalysts is key to promoting the large-scale application of hydrogen production by PEMWE. At present, precious metals remain irreplaceable in acidic OER catalysis, and loading the support body with precious metal components is undoubtedly an effective strategy to reduce costs. In this review, we will discuss the unique role of common catalyst-support interactions such as Metal-Support Interactions (MSIs), Strong Metal-Support Interactions (SMSIs), Strong Oxide-Support Interactions (SOSIs), and Electron-Metal-Support Interactions (EMSIs) in modulating catalyst structure and performance, thereby promoting the development of high-performance, high-stability, low-cost noble metal-based acidic OER catalysts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Gómez-Polo, C., A. Gil, S. A. Korili, J. I. Pérez-Landazabal, V. Recarte, R. Trujillano und M. A. Vicente. „Magnetic Properties of Nickel and Cobalt Catalysts Supported on Nanoporous Oxides“. Journal of Nanoscience and Nanotechnology 8, Nr. 6 (01.06.2008): 2905–11. http://dx.doi.org/10.1166/jnn.2008.18317.

Der volle Inhalt der Quelle
Annotation:
The aim of this work is to use magnetic measurements as a research tool in the study of possible metal-support interactions in nickel and cobalt nanoporous catalysts. Several physicochemical techniques, namely nitrogen adsorption, X-ray diffraction, temperature-programmed reduction and chemical analysis, were used to analyze the role of the preparation method and the nature of the support on the existence of such metal-support interactions and to relate them with the magnetic response of these nanoporous systems. The catalysts were prepared by incipient wetness impregnation and precipitation-deposition with two commercial oxides, γ-Al2O3 and SiO2, as supports. The magnetic behavior of the catalysts is drastically affected by the existence of interactions between the metal and the support during the preparation procedure. The samples with weak metal-support interactions have characteristic magnetic behavior of antiferromagnetic metal oxide nanoparticles, while the ones having strong interactions display spin-glass like behavior.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Konsolakis, Michalis, und Zisis Ioakeimidis. „Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions“. Applied Surface Science 320 (November 2014): 244–55. http://dx.doi.org/10.1016/j.apsusc.2014.08.114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ji, L., J. Lin und H. C. Zeng. „Metal−Support Interactions in Co/Al2O3Catalysts: A Comparative Study on Reactivity of Support“. Journal of Physical Chemistry B 104, Nr. 8 (März 2000): 1783–90. http://dx.doi.org/10.1021/jp993400l.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Liu, Jingyue. „ChemInform Abstract: Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts“. ChemInform 42, Nr. 41 (19.09.2011): no. http://dx.doi.org/10.1002/chin.201141203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Mogorosi, Ramoshibidu P., Nico Fischer, Michael Claeys und Eric van Steen. „Strong-metal–support interaction by molecular design: Fe–silicate interactions in Fischer–Tropsch catalysts“. Journal of Catalysis 289 (Mai 2012): 140–50. http://dx.doi.org/10.1016/j.jcat.2012.02.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Zhang, Yunshang, Jin‐Xun Liu, Kun Qian, Aiping Jia, Dan Li, Lei Shi, Jun Hu, Junfa Zhu und Weixin Huang. „Structure Sensitivity of Au‐TiO 2 Strong Metal–Support Interactions“. Angewandte Chemie International Edition 60, Nr. 21 (16.04.2021): 12074–81. http://dx.doi.org/10.1002/anie.202101928.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zhang, Yunshang, Jin‐Xun Liu, Kun Qian, Aiping Jia, Dan Li, Lei Shi, Jun Hu, Junfa Zhu und Weixin Huang. „Structure Sensitivity of Au‐TiO 2 Strong Metal–Support Interactions“. Angewandte Chemie 133, Nr. 21 (16.04.2021): 12181–88. http://dx.doi.org/10.1002/ange.202101928.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Vaarkamp, Marius, Jeff T. Miller, Frank S. Modica und Dick C. Koningsberger. „The Influence of Metal-Support Interactions on the Whiteline Intensity“. Japanese Journal of Applied Physics 32, S2 (01.01.1993): 454. http://dx.doi.org/10.7567/jjaps.32s2.454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Shi, Qiaolan, Tianrong Yu, Renfei Wu und Jian Liu. „Metal–Support Interactions of Single-Atom Catalysts for Biomedical Applications“. ACS Applied Materials & Interfaces 13, Nr. 51 (16.12.2021): 60815–36. http://dx.doi.org/10.1021/acsami.1c18797.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Sault, Allen G., Charles H. F. Peden und Elaine P. Boespflug. „Metal-Support Interactions in Hydrous Titanium Oxide-Supported Nickel Catalysts“. Journal of Physical Chemistry 98, Nr. 6 (Februar 1994): 1652–62. http://dx.doi.org/10.1021/j100057a019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ahmadi, M., H. Mistry und B. Roldan Cuenya. „Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions“. Journal of Physical Chemistry Letters 7, Nr. 17 (25.08.2016): 3519–33. http://dx.doi.org/10.1021/acs.jpclett.6b01198.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Ozin, Geoffrey A., Francois Hugues und Saba M. Mattar. „Atomic silver fluorescent probe of metal-support interactions in zeolites“. Journal of Physical Chemistry 89, Nr. 2 (Januar 1985): 300–304. http://dx.doi.org/10.1021/j100248a025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Mullins, D. R., und K. Z. Zhang. „Metal–support interactions between Pt and thin film cerium oxide“. Surface Science 513, Nr. 1 (Juli 2002): 163–73. http://dx.doi.org/10.1016/s0039-6028(02)01704-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Soria, J., M. T. Blasco und J. C. Conesa. „Metal-support interactions in supported nickel catalysts: a FMR study“. Surface Science Letters 251-252 (Juli 1991): A373. http://dx.doi.org/10.1016/0167-2584(91)91015-o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

AKUBUIRO, E. „Dopant-induced metal-support interactions 1. Influence on chemisorptive behavior“. Journal of Catalysis 103, Nr. 2 (Februar 1987): 320–33. http://dx.doi.org/10.1016/0021-9517(87)90124-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Soria, J., M. T. Blasco und J. C. Conesa. „Metal-support interactions in supported nickel catalysts: a FMR study“. Surface Science 251-252 (Juli 1991): 1018–22. http://dx.doi.org/10.1016/0039-6028(91)91143-l.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Cammarota, Ryan C., Laura J. Clouston und Connie C. Lu. „Leveraging molecular metal–support interactions for H2 and N2 activation“. Coordination Chemistry Reviews 334 (März 2017): 100–111. http://dx.doi.org/10.1016/j.ccr.2016.06.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Vayenas, C. G., und G. E. Pitselis. „Mathematical Modeling of Electrochemical Promotion and of Metal−Support Interactions“. Industrial & Engineering Chemistry Research 40, Nr. 20 (Oktober 2001): 4209–15. http://dx.doi.org/10.1021/ie010001f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Chen, Kaidong, Yining Fan und Qijie Yan. „Metal–Support Interactions in Fe/ZrO2Catalysts for Hydrogenation of CO“. Journal of Catalysis 167, Nr. 2 (April 1997): 573–75. http://dx.doi.org/10.1006/jcat.1997.1592.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Vayenas, Costas G. „Promotion, Electrochemical Promotion and Metal–Support Interactions: Their Common Features“. Catalysis Letters 143, Nr. 11 (22.10.2013): 1085–97. http://dx.doi.org/10.1007/s10562-013-1128-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Tan, Kaiyang, Mudit Dixit, James Dean und Giannis Mpourmpakis. „Predicting Metal–Support Interactions in Oxide-Supported Single-Atom Catalysts“. Industrial & Engineering Chemistry Research 58, Nr. 44 (08.10.2019): 20236–46. http://dx.doi.org/10.1021/acs.iecr.9b04068.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Liu, Lichen, Chengyan Ge, Weixin Zou, Xianrui Gu, Fei Gao und Lin Dong. „Crystal-plane-dependent metal–support interaction in Au/TiO2“. Physical Chemistry Chemical Physics 17, Nr. 7 (2015): 5133–40. http://dx.doi.org/10.1039/c4cp05449k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Frey, H., A. Beck, X. Huang, J. A. van Bokhoven und M. G. Willinger. „Dynamic interplay between metal nanoparticles and oxide support under redox conditions“. Science 376, Nr. 6596 (27.05.2022): 982–87. http://dx.doi.org/10.1126/science.abm3371.

Der volle Inhalt der Quelle
Annotation:
The dynamic interactions between noble metal particles and reducible metal-oxide supports can depend on redox reactions with ambient gases. Transmission electron microscopy revealed that the strong metal-support interaction (SMSI)–induced encapsulation of platinum particles on titania observed under reducing conditions is lost once the system is exposed to a redox-reactive environment containing oxygen and hydrogen at a total pressure of ~1 bar. Destabilization of the metal–oxide interface and redox-mediated reconstructions of titania lead to particle dynamics and directed particle migration that depend on nanoparticle orientation. A static encapsulated SMSI state was reestablished when switching back to purely oxidizing conditions. This work highlights the difference between reactive and nonreactive states and demonstrates that manifestations of the metal-support interaction strongly depend on the chemical environment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Wang, Fei, Jianzhun Jiang und Bin Wang. „Recent In Situ/Operando Spectroscopy Studies of Heterogeneous Catalysis with Reducible Metal Oxides as Supports“. Catalysts 9, Nr. 5 (23.05.2019): 477. http://dx.doi.org/10.3390/catal9050477.

Der volle Inhalt der Quelle
Annotation:
For heterogeneous catalysis, the metal catalysts supported on reducible metal oxides, especially CeO2 and TiO2, have long been a research focus because of their excellent catalytic performance in a variety of catalytic reactions. Detailed understanding of the promotion effect of reducible metal oxides on catalytic reactions is beneficial to the rational design of new catalysts. The important catalytic roles of reducible metal oxides are attributed to their intimate interactions with the supported metals (e.g., strong metal-support interaction, electronic metal-support interaction) and unique support structures (e.g., oxygen vacancy, reversible valence change, surface hydroxyl). However, the structures of the catalysts and reaction mechanisms are strongly affected by environmental conditions. For this reason, in situ/operando spectroscopy studies under working conditions are necessary to obtain accurate information about the structure-activity relationship. In this review, the recent applications of the in situ/operando spectroscopy methodology on metal catalysts with reducible metal oxides as supports are summarized.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie