Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Metal-support interactions“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Metal-support interactions" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Metal-support interactions"
Tauster, S. J. „Strong metal-support interactions“. Accounts of Chemical Research 20, Nr. 11 (November 1987): 389–94. http://dx.doi.org/10.1021/ar00143a001.
Der volle Inhalt der QuelleBURCH, R. „Metal sulfide-support interactions“. Journal of Catalysis 97, Nr. 2 (Februar 1986): 385–89. http://dx.doi.org/10.1016/0021-9517(86)90010-2.
Der volle Inhalt der QuelleDu, Xiaorui, Hailian Tang und Botao Qiao. „Oxidative Strong Metal–Support Interactions“. Catalysts 11, Nr. 8 (25.07.2021): 896. http://dx.doi.org/10.3390/catal11080896.
Der volle Inhalt der Quelledel Arco, M., und V. Rives. „Metal-support and metal oxide-support interactions in Cu/TiO2“. Reaction Kinetics and Catalysis Letters 31, Nr. 1 (März 1986): 239–44. http://dx.doi.org/10.1007/bf02062539.
Der volle Inhalt der QuelleGuenin, M., P. N. Da Silva und R. Frety. „Influence of chlorine towards metal-support and metal-sulphur support interactions“. Applied Catalysis 27, Nr. 2 (Januar 1986): 313–23. http://dx.doi.org/10.1016/s0166-9834(00)82927-9.
Der volle Inhalt der QuelleDouidah, A., P. Marécot, S. Szabo und J. Barbier. „Evaluation of the metal–support interactions“. Applied Catalysis A: General 225, Nr. 1-2 (Februar 2002): 21–31. http://dx.doi.org/10.1016/s0926-860x(01)00627-5.
Der volle Inhalt der QuelleNicole, J., D. Tsiplakides, C. Pliangos, X. E. Verykios, Ch Comninellis und C. G. Vayenas. „Electrochemical Promotion and Metal–Support Interactions“. Journal of Catalysis 204, Nr. 1 (November 2001): 23–34. http://dx.doi.org/10.1006/jcat.2001.3360.
Der volle Inhalt der QuelleBADYAL, J. P. S. „ChemInform Abstract: Strong Metal-Support Interactions“. ChemInform 25, Nr. 2 (19.08.2010): no. http://dx.doi.org/10.1002/chin.199402301.
Der volle Inhalt der QuelleLi, Yangyang, Yunshang Zhang, Kun Qian und Weixin Huang. „Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts“. ACS Catalysis 12, Nr. 2 (06.01.2022): 1268–87. http://dx.doi.org/10.1021/acscatal.1c04854.
Der volle Inhalt der QuelleOkamoto, Yasuaki, Takeshi Kubota, Yoshiharu Ohto und Saburo Nasu. „Metal Oxide−Support Interactions in Fe/ZrO2Catalysts“. Journal of Physical Chemistry B 104, Nr. 35 (September 2000): 8462–70. http://dx.doi.org/10.1021/jp994122t.
Der volle Inhalt der QuelleDissertationen zum Thema "Metal-support interactions"
Anderson, J. B. F. „Strong metal-support interactions in titania-supported metal catalysts“. Thesis, University of Reading, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372539.
Der volle Inhalt der QuelleJungius, Hugo. „Model inverse electro-catalyst investigations of metal support interactions“. Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/413849/.
Der volle Inhalt der QuelleMogorosi, Ramoshibidu Patrick. „Metal-support interactions on Fe-based Fischer-Tropsch catalysts“. Doctoral thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/5438.
Der volle Inhalt der QuelleIncludes bibliographical references.
‘Metal support interactions’ is a term used to describe a phenomenon whereby the interaction between the active metal and the support material is strong enough to affect the catalytic activity and selectivity of the active phase. Primarily, there are two theories described in literature to explain the manner in which the development of these interactions alters catalytic behavior in supported catalysts. The first theory is ‘the contact affect’, which is generally associated with partially reducible supports such as TiO2 [Tauster et al., 1978]. It is believed that the intimate contact between the partially reduced surface of the support and the surface of the active phase results in the creation of special contact sites at the interface. These sites are thought to be responsible for the improved activity observed in TiO2 supported catalysts [Burch and Flambard, 1982; Vannice and Sudhakar, 1984; Tauster, 1987]. The second theory is ‘the ligand effect’. With this hypothesis, it is proposed that the development of chemical bonds at the interface between the active metal and the support material is responsible for the altered catalytic behavior in supported catalysts [Qing et al., 2011; Sou et al., 2012]. The presence of these bonds is believed to alter the strength of CO and H2 absorption on the surface of the active phase, resulting in different activity and selectivity. These chemical bonds might be viewed as ligand attachments [Haller and Resasco, 1989], holding the active metal in place. The ligand effect is commonly associated with irreducible support material such as silica [Hou et al., 2008; Sou et al., 2012] and alumina [Taniguchi, et al., 1988; Wan et al., 2007]. The aim of this study was to investigate metal support interactions as a ligand effect. The objective was to prepare model catalysts and modify the surface of the iron oxide using alkoxide compounds, viz. tetra ethoxy-silane (TEOS) and titanium butoxide (TBO), to generate the Fe-O-Si and Fe-O-Ti interactions respectively in a controlled and varying manner in order to investigate how these interactions affect the behaviour of the catalysts. The presence of both the surface silicate and surface titanate groups in the calcined catalyst precursor was confirmed using DRIFTS. Characterization of the calcined samples, containing Fe2O3, showed an overall decrease in the average crystallite size with increasing alkoxide loading (for both TEOS and TBO). However, this effect was more severe for the TEOS modified samples.
Venable, Margaret Hamm. „Syntheses, structures and support interactions of potential metal oxide catalyst precursors“. Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/26940.
Der volle Inhalt der QuelleDEMRI, HARIK OJAMILA, und J. P. HINDERMANN. „Etude des interactions metal-support et metal-promoteur sur des catalyseurs a base de rhodium“. Université Louis Pasteur (Strasbourg) (1971-2008), 1992. http://www.theses.fr/1992STR13101.
Der volle Inhalt der QuelleMacheli, Lebohang. „Inverse model systems to investigate metal-support interactions in Fischer-Tropsch catalysis“. Doctoral thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/30921.
Der volle Inhalt der QuelleTraversaz, Olivier. „Etude des interactions relatives metal-metal et metal-support mises en jeu lors de la preparation de catalyseurs bimetalliques supportes“. Paris 6, 1992. http://www.theses.fr/1992PA066621.
Der volle Inhalt der QuelleDyasi, Nontsikelelo. „Model systems for the investigation of metal-support interactions in cobalt based Fischer-Tropsch“. Master's thesis, Faculty of Engineering and the Built Environment, 2021. http://hdl.handle.net/11427/33639.
Der volle Inhalt der QuelleNeumann, Sarah [Verfasser], Sebastian [Akademischer Betreuer] Kunz, Sebastian [Gutachter] Kunz und Marcus [Gutachter] Bäumer. „Heterogeneous Catalysis with supported Nanoparticles : Particle Size Effects and Metal-Support Interactions / Sarah Neumann ; Gutachter: Sebastian Kunz, Marcus Bäumer ; Betreuer: Sebastian Kunz“. Bremen : Staats- und Universitätsbibliothek Bremen, 2019. http://d-nb.info/1203298927/34.
Der volle Inhalt der QuelleSpence, Stephanie L. „Tuning the Morphology and Electronic Properties of Single-Crystal LiNi0.5Mn1.5O4-δ“. Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100790.
Der volle Inhalt der QuelleM.S.
The development of lithium-ion batteries has been fundamental to the expansion and prevalence of consumer electronics and electric vehicles in the twenty-first century. Despite their ubiquity, there is an ongoing drive by researchers to address the limitations and improve the quality and performance of lithium ion batteries. Much research has focused on altering the composition, structure, or properties of electrodes at the materials level to design higher achieving batteries. A fundamental understanding of how composition and structure effect battery performance is necessary to progress toward better materials. This thesis focuses on investigating the properties of LiNi0.5Mn1.5O4-δ (LNMO). LNMO material is considered a promising cathode material to meet the increasing consumer demands for improved battery performance. Through the synthesis methods, the shape of individual particles and the global electronic properties of LNMO can be tuned. In this work, specific synthesis parameters are systematically tuned and the properties of the resultant LNMO materials are explored. Electrochemical testing also evaluates the performance of the materials and offers insights into how they may fair in real battery systems. In an effort to potentially recycle spent battery materials, LNMO is also utilized as a catalyst support. Alteration of shape and electronic properties of the LNMO support can influence the catalytic properties, or the ability of the material to enhance the rate of a chemical reaction. Overall, this thesis explores how LNMO can be tuned and utilized for different applications. This work provides insights for understanding LNMO properties and direction for the development of future battery materials.
Bücher zum Thema "Metal-support interactions"
Baker, R. T. K., S. J. Tauster und J. A. Dumesic, Hrsg. Strong Metal-Support Interactions. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0298.
Der volle Inhalt der QuelleBaker, R. T. K., 1938-, Tauster S. J. 1935-, Dumesic J. A. 1949-, American Chemical Society. Division of Petroleum Chemistry., American Chemical Society. Division of Industrial and Engineering Chemistry., American Chemical Society. Division of Colloid and Surface Chemistry. und American Chemical Society Meeting, Hrsg. Strong metal-support interactions. Washington, DC: The Society, 1986.
Den vollen Inhalt der Quelle findenA, Stevenson Scott, Hrsg. Metal-support interactions in catalysis, sintering, and redispersion. New York: Van Nostrand Reinhold Co., 1987.
Den vollen Inhalt der Quelle finden(Firm), Knovel, Hrsg. Electrochemical activation of catalysis: Promotion, electrochemical promotion, and metal-support interactions. New York: Kluwer Academic/Plenum Publishers, 2001.
Den vollen Inhalt der Quelle findenG, Vayenas C., Hrsg. Electrochemical activation of catalysis: Promotion, electrochemical promotion, and metal-support interactions. New York: Kluwer Academic/Plenum Publishers, 2001.
Den vollen Inhalt der Quelle findenVayenas, Costas G., Symeon Bebelis und Costas Pliangos. Electrochemical Activation of Catalysis: Promotion Electrochemical Promotion and Metal-Support Interactions. Kap/Plenum (E), 2002.
Den vollen Inhalt der Quelle findenVayenas, Costas G., Symeon Bebelis, Costas Pliangos, Susanne Brosda und Demetrios Tsiplakides. Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion, and Metal-Support Interactions. Springer, 2002.
Den vollen Inhalt der Quelle findenVayenas, Costas G. Electrochemical Activation of Catalysis: "Promotion, Electrochemical Promotion, And Metal-Support Interactions". Springer, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Metal-support interactions"
Tauster, S. J. „Strong Metal-Support Interactions“. In ACS Symposium Series, 1–9. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0298.ch001.
Der volle Inhalt der QuelleCoq, B. „Metal-Support Interaction In Catalysis“. In Metal-Ligand Interactions in Chemistry, Physics and Biology, 49–71. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4245-8_3.
Der volle Inhalt der QuelleKo, E. I., J. E. Lester und G. Marcelin. „Metal-Support Interactions in Ni Catalysts“. In ACS Symposium Series, 123–35. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0298.ch013.
Der volle Inhalt der QuelleHaberlandt, Helmut. „Theoretical Investigation of Metal-Support Interactions and Their Influence on Chemisorption“. In Theoretical Aspects of Heterogeneous Catalysis, 311–98. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-010-9882-3_8.
Der volle Inhalt der QuellePanagiotopoulou, Paraskevi, und Xenophon E. Verykios. „Metal–support interactions of Ru-based catalysts under conditions of CO and CO2 hydrogenation“. In Catalysis, 1–23. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788019477-00001.
Der volle Inhalt der QuelleMiura, H., S. S. Feng, R. Saymeh und R. D. Gonzalez. „The Effect of Support-Metal Precursor Interactions on the Surface Composition of Supported Bimetallic Clusters“. In Catalyst Characterization Science, 294–304. Washington, DC: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0288.ch025.
Der volle Inhalt der QuelleDeo, Goutam, und Israel E. Wachs. „Surface Oxide—Support Interactions in the Molecular Design of Supported Metal Oxide Selective Oxidation Catalysts“. In ACS Symposium Series, 31–42. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/bk-1993-0523.ch003.
Der volle Inhalt der QuelleHorsley, J. A., und F. W. Lytle. „Information on Metal-Support Interactions from Near Edge X-ray Absorption Spectroscopy and Multiple Scattering Calculations“. In ACS Symposium Series, 10–20. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0298.ch002.
Der volle Inhalt der QuelleSpencer, M. S. „Equilibrium and Kinetic Aspects of Strong Metal-Support Interactions in Pt-TiO2and Cobalt-Doped Cu-ZnO-Al2O3Catalysts“. In ACS Symposium Series, 89–98. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0298.ch009.
Der volle Inhalt der QuelleIdzik, Christian, Daniel Hilger, Norbert Hosters, Marco Kemmerling, Philipp Niemietz, Lucia Ortjohann, Jana Sasse et al. „Decision Support for the Optimization of Continuous Processesusing Digital Shadows“. In Internet of Production, 281–301. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-44497-5_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Metal-support interactions"
Haxhimali, Tomorr, Marco Echeverria, Fady Najjar, Petros Tzeferacos, Suzanne J. Ali, Hye-Sook Park, Jon Eggert et al. „Hydrodynamic and atomistic studies in support of high power laser experiments for metal ejecta recollection and interactions“. In SHOCK COMPRESSION OF CONDENSED MATTER - 2019: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Publishing, 2020. http://dx.doi.org/10.1063/12.0000824.
Der volle Inhalt der Quelle„Syngas production via combined dry and steam reforming methane over Ni-based catalyst: A review“. In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-3.
Der volle Inhalt der QuelleDahlstro¨m, Stefan, S. Jack Hu und Rikard So¨derberg. „Identifying Variable Effects on the Dimensional Quality of Compliant Assembly, Using Computer Experiments“. In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/dac-34035.
Der volle Inhalt der QuelleKlie, Robert F., Kai Sun, Mark M. Disko, J. Liu und N. D. Browning. „Direct observation of metal support interaction in nano-scale systems“. In International Symposium on Optical Science and Technology, herausgegeben von Jin Z. Zhang und Zhong L. Wang. SPIE, 2002. http://dx.doi.org/10.1117/12.450936.
Der volle Inhalt der QuelleCavallaro, Paul V., Christopher J. Hart und Ali M. Sadegh. „Mechanics of Air-Inflated Drop-Stitch Fabric Panels Subject to Bending Loads“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63839.
Der volle Inhalt der QuelleCarvel, Iain, Richard D. Gunn, Christopher H. Orr und Robin Strange. „A Practical Approach to Proving Waste Metals Suitable for Consignment as Radiologically Exempt Materials“. In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59266.
Der volle Inhalt der QuelleSemiga, Vlado, Sanjay Tiku und Aaron Dinovitzer. „Pipeline Mechanical Damage Integrity Management Framework“. In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90433.
Der volle Inhalt der QuelleGuo, Liancheng, Koji Morita, Hirotaka Tagami und Yoshiharu Tobita. „Validation of a 3D Hybrid CFD-DEM Method Based on a Self-Leveling Experiment“. In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30618.
Der volle Inhalt der QuelleDel Nevo, Alessandro, Andrea Ciampichetti, Nicola Forgione und Simone Mannori. „LIFUS5/Mod2: The Experimental Facility for HLM/Water Interaction Investigation“. In 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icone20-power2012-54733.
Der volle Inhalt der QuelleDeilamsalehy, Hanieh, Timothy C. Havens und Pasi Lautala. „Detection of Sliding Wheels and Hot Bearings Using Wayside Thermal Cameras“. In 2016 Joint Rail Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/jrc2016-5711.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Metal-support interactions"
James M. Howe und Robert J. Davis. Understanding and Controlling Metal-Support Interactions in Nanocrystalline Bimetallic Catalysts. Office of Scientific and Technical Information (OSTI), Juni 2005. http://dx.doi.org/10.2172/885190.
Der volle Inhalt der QuelleVannice, M. A. Enhancement of activity and selectivity by Metal-Support Interactions (MSI). Office of Scientific and Technical Information (OSTI), Juli 1991. http://dx.doi.org/10.2172/7281568.
Der volle Inhalt der QuelleVannice, M. A. The Influence of MSI (Metal-Support Interactions) and the Solvent in Liquid-Phase Reactions. Office of Scientific and Technical Information (OSTI), Mai 2003. http://dx.doi.org/10.2172/824023.
Der volle Inhalt der QuelleGonzalez, R. D. The formation of supported bimetallic clusters: The effect of support-metal precursor interactions. Final report. Office of Scientific and Technical Information (OSTI), Juli 1994. http://dx.doi.org/10.2172/10163134.
Der volle Inhalt der QuelleBoszormenyi, Istvan. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study. Office of Scientific and Technical Information (OSTI), Mai 1991. http://dx.doi.org/10.2172/10115869.
Der volle Inhalt der QuelleBoszormenyi, I. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study. Office of Scientific and Technical Information (OSTI), Mai 1991. http://dx.doi.org/10.2172/6827194.
Der volle Inhalt der QuelleHenrich, V. Model catalyst studies of active sites and metal support interactions on vanadia and vanadia-supported catalysts. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5484103.
Der volle Inhalt der QuelleVannice, M. A. Enhancement of activity and selectivity by Metal-Support Interactions (MSI). Progress report, September 1, 1988--June 30, 1991. Office of Scientific and Technical Information (OSTI), Juli 1991. http://dx.doi.org/10.2172/10159594.
Der volle Inhalt der QuelleTiku, Sanjay, Amin Eshraghi, Aaron Dinovitzer und Arnav Rana. PR-214-114500-R01 Fatigue Life Assessment of Dents with and without Interacting Features. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 2018. http://dx.doi.org/10.55274/r0011540.
Der volle Inhalt der QuelleTiku, Sanjay, Aaron Dinovitzer, Vlad Semiga und Binoy John. PR-214-073510-Z01 FS Fatigue Testing Plain Dents+Dents Interacting with Welds and Metal Loss with Data. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2018. http://dx.doi.org/10.55274/r0011514.
Der volle Inhalt der Quelle