Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Metal hydride storage“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Metal hydride storage" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Metal hydride storage"
MENG, XIANG-YU, ZE-WEI BAO, FU-SHENG YANG und ZAO-XIAO ZHANG. „THEORETICAL INVESTIGATION OF SOLAR ENERGY HIGH TEMPERATURE HEAT STORAGE TECHNOLOGY BASED ON METAL HYDRIDES“. International Journal of Air-Conditioning and Refrigeration 19, Nr. 02 (Juni 2011): 149–58. http://dx.doi.org/10.1142/s2010132511000508.
Der volle Inhalt der QuelleJensen, Emil H., Martin Dornheim und Sabrina Sartori. „Scaling up Metal Hydrides for Real-Scale Applications: Achievements, Challenges and Outlook“. Inorganics 9, Nr. 5 (07.05.2021): 37. http://dx.doi.org/10.3390/inorganics9050037.
Der volle Inhalt der QuelleKim, Sun Woo, und Kwang J. Kim. „Hydrogen Storage with Annular LaNi5 Metal Hydride Pellets“. Advanced Materials Research 875-877 (Februar 2014): 1671–75. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.1671.
Der volle Inhalt der QuelleDesai, Fenil J., M. Nizam Uddin, Muhammad M. Rahman und Ramazan Asmatulu. „Studying the properties of polymeric composites of metal hydrides and carbon particles for hydrogen storage“. Journal of Management and Engineering Integration 14, Nr. 1 (Juni 2021): 119–27. http://dx.doi.org/10.62704/10057/24774.
Der volle Inhalt der QuelleComanescu, Cezar. „Graphene Supports for Metal Hydride and Energy Storage Applications“. Crystals 13, Nr. 6 (27.05.2023): 878. http://dx.doi.org/10.3390/cryst13060878.
Der volle Inhalt der QuelleBogdanovic, Borislav, Michael Felderhoff und Guido Streukens. „Hydrogen storage in complex metal hydrides“. Journal of the Serbian Chemical Society 74, Nr. 2 (2009): 183–96. http://dx.doi.org/10.2298/jsc0902183b.
Der volle Inhalt der QuelleKukkapalli, Vamsi Krishna, Sunwoo Kim und Seth A. Thomas. „Thermal Management Techniques in Metal Hydrides for Hydrogen Storage Applications: A Review“. Energies 16, Nr. 8 (14.04.2023): 3444. http://dx.doi.org/10.3390/en16083444.
Der volle Inhalt der QuelleKoseki, Takami, Harunobu Takeda, Kazuaki Iijima, Masamitu Murai, Hisayoshi Matsufuji und Osamu Kawaguchi. „Development of Heat-Storage System Using Metal Hydraid: Experiment of Performance by the Actual Loading Condition“. Journal of Solar Energy Engineering 128, Nr. 3 (28.12.2005): 376–82. http://dx.doi.org/10.1115/1.2210492.
Der volle Inhalt der QuelleKazakov, Alexey, Dmitry Blinov, Ivan Romanov, Dmitry Dunikov und Vasily Borzenko. „Metal hydride technologies for renewable energy“. E3S Web of Conferences 114 (2019): 05005. http://dx.doi.org/10.1051/e3sconf/201911405005.
Der volle Inhalt der QuellePuszkiel, Julián, Aurelien Gasnier, Guillermina Amica und Fabiana Gennari. „Tuning LiBH4 for Hydrogen Storage: Destabilization, Additive, and Nanoconfinement Approaches“. Molecules 25, Nr. 1 (31.12.2019): 163. http://dx.doi.org/10.3390/molecules25010163.
Der volle Inhalt der QuelleDissertationen zum Thema "Metal hydride storage"
Balducci, Giulia. „Lightweight metal hydride-hydroxide systems for solid state hydrogen storage“. Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6534/.
Der volle Inhalt der QuelleGriffond, Arnaud Camille Maurice. „Concentrating Solar Thermal storage using metal hydride: Study of destabilised calcium hydrides“. Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/78467.
Der volle Inhalt der QuellePoupin, Lucas Michel Dominique. „Development of metal hydride systems for thermal energy storage applications“. Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/84107.
Der volle Inhalt der QuelleWebb, Timothy. „Structure-Function Relationships in Metal Hydrides: Origin of Pressure Hysteresis“. Thesis, Griffith University, 2017. http://hdl.handle.net/10072/366696.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
Blinov, D. V., S. P. Malyshenko, V. I. Borzenko und D. O. Dunikov. „Experimental Investigations of Hydrogen Purification by Purging Through Metal Hydride“. Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35221.
Der volle Inhalt der QuelleLutz, Michael [Verfasser], und André [Akademischer Betreuer] Thess. „Coupled metal hydride systems for energy storage / Michael Lutz ; Betreuer: André Thess“. Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2021. http://d-nb.info/1234452863/34.
Der volle Inhalt der QuelleSibanyoni, Johannes Mlandu. „Nanostructured light weight hydrogen storage materials“. University of the Western Cape, 2012. http://hdl.handle.net/11394/4631.
Der volle Inhalt der QuelleThe main objective of this study was to advance kinetic performances of formation and decomposition of magnesium hydride by design strategies which include high energy ball milling in hydrogen (HRBM), in combination with the introduction of catalytic/dopant additives. In this regard, the transformation of Mg → MgH2 by high energy reactive ball milling in hydrogen atmosphere (HRBM) of Mg with various additives to yield nanostructured composite hydrogen storage materials was studied using in situ pressure-temperature monitoring that allowed to get time-resolved results about hydrogenation behaviour during HRBM. The as-prepared and re-hydrogenated nanocomposites were characterized using XRD, high-resolution SEM and TEM, as well as measurements of the mean particle size. Dehydrogenation performances of the nanocomposites were studied by DSC / TGA and TDS; and the re-hydrogenation behaviour was investigated using Sieverts volumetric technique.
Oksuz, Berke. „Production And Characterization Of Cani Compounds For Metal Hydride Batteries“. Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614676/index.pdf.
Der volle Inhalt der QuelleStienecker, Adam W. „An ultracapacitor - battery energy storage system for hybhrid electric vehicles /“. See Full Text at OhioLINK ETD Center (Requires Adobe Acrobat Reader for viewing), 2005. http://www.ohiolink.edu/etd/view.cgi?acc%5Fnum=toledo1121976890.
Der volle Inhalt der QuelleTypescript. "A dissertation [submitted] as partial fulfillment of the requirements of the Doctor of Philosophy degree in Engineering." Bibliography: leaves 61-63.
Abdin, Zainul. „Components models for solar hydrogen hybrid energy systems based on metal hydride energy storage“. Thesis, Griffith University, 2017. http://hdl.handle.net/10072/370890.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
Bücher zum Thema "Metal hydride storage"
Willey, David Benjamin. The investigation of the hydrogen storage properties of metal hydride electrode alloy surface modified with platinum group metals. Birmingham: University of Birmingham, 1999.
Den vollen Inhalt der Quelle findenMaintenance-free batteries: Lead-acid, nickel/cadmium, nickel/metal hydride : a handbook of battery technology. 2. Aufl. Somerset, England: Research Studies Press, 1997.
Den vollen Inhalt der Quelle findenMaintenance-free batteries: Lead-acid, nickel/cadmium, nickel/hydride : a handbook of battery technology. Taunton, Somerset, England: Research Studies Press, 1993.
Den vollen Inhalt der Quelle findenMaintenance-free batteries: Based on aqueous electrolyte lead-acid, nickel/cadmium, nickel/metal hydride : a handbook of battery technology. 3. Aufl. Philadelphia, PA: Research Studies Press, 2003.
Den vollen Inhalt der Quelle findenSylvie, Genies, Hrsg. Lead-nickel electrochemical batteries. Hoboken, NJ: Wiley, 2012.
Den vollen Inhalt der Quelle findenM, O'Donnell P., und United States. National Aeronautics and Space Administration., Hrsg. Nickel-hydrogen batteries--an overview. Reston, VA: American Institute of Aeronautics and Astronautics, 1996.
Den vollen Inhalt der Quelle findenGlaize, Christian, und Sylvie Genies. Lead-Nickel Electrochemical Batteries. Wiley & Sons, Incorporated, John, 2012.
Den vollen Inhalt der Quelle findenGlaize, Christian, und Sylvie Genies. Lead-Nickel Electrochemical Batteries. Wiley & Sons, Incorporated, John, 2012.
Den vollen Inhalt der Quelle findenGlaize, Christian, und Sylvie Genies. Lead-Nickel Electrochemical Batteries. Wiley & Sons, Incorporated, John, 2012.
Den vollen Inhalt der Quelle findenGlaize, Christian, und Sylvie Genies. Lead-Nickel Electrochemical Batteries. Wiley & Sons, Incorporated, John, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Metal hydride storage"
Chen, Ping, Etsuo Akiba, Shin-ichi Orimo, Andreas Zuettel und Louis Schlapbach. „Hydrogen Storage by Reversible Metal Hydride Formation“. In Hydrogen Science and Engineering : Materials, Processes, Systems and Technology, 763–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527674268.ch31.
Der volle Inhalt der QuelleMa, Hua, Fangyi Cheng und Jun Chen. „Nickel-Metal Hydride (Ni-MH) Rechargeable Batteries“. In Electrochemical Technologies for Energy Storage and Conversion, 175–237. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639496.ch5.
Der volle Inhalt der QuelleGkanas, Evangelos I., und Martin Khzouz. „Metal Hydride Hydrogen Compression Systems - Materials, Applications and Numerical Analysis“. In Hydrogen Storage Technologies, 1–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119460572.ch1.
Der volle Inhalt der QuelleHeung, L. K. „On-Board Hydrogen Storage System Using Metal Hydride“. In Hydrogen Power: Theoretical and Engineering Solutions, 251–56. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9054-9_32.
Der volle Inhalt der QuelleCorgnale, Claudio, und Bruce Hardy. „Thermal Energy Storage Systems Based on Metal Hydride Materials“. In Nanostructured Materials for Next-Generation Energy Storage and Conversion, 283–315. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59594-7_10.
Der volle Inhalt der QuelleSreeraj, R., A. K. Aadhithiyan, Prateek Sahoo und S. Anbarasu. „Heat Transfer Enhancement of Metal Hydride Based Hydrogen Storage Device Using Nano-fluids“. In Green Energy and Technology, 689–703. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2279-6_61.
Der volle Inhalt der QuelleDong, Shuai, Hao Liu, Xinyuan Liu, Chaoqun Li, Zhengyang Gao und Weijie Yang. „H-Mg Bond Weakening Mechanism of Graphene-Based Single-Atom Catalysts on MgH2(110) Surface“. In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 485–96. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_47.
Der volle Inhalt der QuelleTolj, Ivan, Mykhaylo Lototskyy, Adrian Parsons und Sivakumar Pasupathi. „Fuel Cell Power Pack with Integrated Metal Hydride Hydrogen Storage for Powering Electric Forklift“. In Recent Advances in Renewable Energy Systems, 19–27. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1581-9_2.
Der volle Inhalt der QuelleLewis, Swaraj D., und Purushothama Chippar. „A Novel Design of Internal Heat Exchangers in Metal Hydride System for Hydrogen Storage“. In Advances in Manufacturing, Automation, Design and Energy Technologies, 661–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1288-9_68.
Der volle Inhalt der QuelleHuot, Jacques. „Metal Hydrides“. In Handbook of Hydrogen Storage, 81–116. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629800.ch4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Metal hydride storage"
Park, Chanwoo, Xudong Tang, Kwang J. Kim, Joseph Gottschlich und Quinn Leland. „Metal Hydride Heat Storage Technology for Directed Energy Weapon Systems“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42831.
Der volle Inhalt der QuellePourpoint, Timothe´e L., Aaron Sisto, Kyle C. Smith, Tyler G. Voskuilen, Milan K. Visaria, Yuan Zheng und Timothy S. Fisher. „Performance of Thermal Enhancement Materials in High Pressure Metal Hydride Storage Systems“. In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56450.
Der volle Inhalt der QuellePark, Y. H., und I. Hijazi. „Palladium Hydride Atomic Potentials for Hydrogen Storage/Separation“. In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28340.
Der volle Inhalt der QuellePark, Chanwoo, Kwang J. Kim, Joseph Gottschlich und Quinn Leland. „High Performance Heat Storage and Dissipation Technology“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82313.
Der volle Inhalt der QuelleLee, Michael, Il-Seok Park, Sunwoo Kim und Kwang J. Kim. „Porous Metal Hydride (PMH) Compacts for Thermal Energy Applications“. In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90361.
Der volle Inhalt der QuellePark, Y. H., und I. Hijazi. „EAM Potential for Hydrogen Storage Application“. In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65845.
Der volle Inhalt der QuelleFlueckiger, Scott, Yuan Zheng und Timothe´e Pourpoint. „Transient Plane Source Method for Thermal Property Measurements of Metal Hydrides“. In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56311.
Der volle Inhalt der QuelleShafiee, Shahin, und Mary Helen McCay. „A Hybrid Energy Storage System Based on Metal Hydrides for Solar Thermal Power and Energy Systems“. In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59183.
Der volle Inhalt der QuelleZheng, Yuan, Varsha Velagapudi, Timothee Pourpoint, Timothy S. Fisher, Issam Mudawar und Jay P. Gore. „Thermal Management Analysis of On-Board High-Pressure Metal Hydride Systems“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14080.
Der volle Inhalt der QuelleBatalović, K., J. Radaković, B. Paskaš Mamula, M. Medić Ilić und B. Kuzmanović. „High-throughput screening of novel hydrogen storage materials – ML approach“. In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.580b.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Metal hydride storage"
Ronnebro, Ewa, Michael Powell, Greg Whyatt, Barry Butler, Roger Davenport, Vladimir Duz, Andrey Klevtsov und Mark Weimar. Engineering a Novel High Temperature Metal Hydride Thermochemical Storage. Office of Scientific and Technical Information (OSTI), Mai 2016. http://dx.doi.org/10.2172/1487270.
Der volle Inhalt der QuelleFisher, I. A., F. B. Ramirez, J. E. Koonce, D. E. Ward, L. K. Heung, M. Weimer, W. Berkebile und S. T. French. Alternatives for metal hydride storage bed heating and cooling. Office of Scientific and Technical Information (OSTI), Oktober 1991. http://dx.doi.org/10.2172/10172233.
Der volle Inhalt der QuelleMotyka, T. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report. Office of Scientific and Technical Information (OSTI), Mai 2014. http://dx.doi.org/10.2172/1171992.
Der volle Inhalt der QuelleJ. Karl Johnson. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems. Office of Scientific and Technical Information (OSTI), Mai 2011. http://dx.doi.org/10.2172/1057876.
Der volle Inhalt der QuelleKlein, J. E. In-bed accountability of tritium in production scale metal hydride storage beds. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/10117024.
Der volle Inhalt der QuelleSapru, K. Develop improved metal hydride technology for the storage of hydrogen. Final technical report. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/344962.
Der volle Inhalt der QuelleZidan, Ragaiy, B. J. Hardy, C. Corgnale, J. A. Teprovich, P. Ward und Ted Motyka. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems. Office of Scientific and Technical Information (OSTI), Januar 2016. http://dx.doi.org/10.2172/1340197.
Der volle Inhalt der QuelleIyakutti, Kombiah. Computational Design, Theoretical and Experimental Investigation of Carbon Nanotube (CNT) - Metal Oxide/Metal Hydride Composite - A Practicable Hydrogen Storage Medium for Fuel Cell - 3. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada567692.
Der volle Inhalt der QuelleZidan, Ragaiy, und Scott McWhorter. Enabling a Flexible Grid with Increased Penetration of DER: Techno-economic Analysis of Metal Hydride Thermochemical Energy Storage Integrated with Stirling Engine for Grid Energy Storage Applications. Office of Scientific and Technical Information (OSTI), Mai 2020. http://dx.doi.org/10.2172/1632839.
Der volle Inhalt der QuelleLesch, David A., J. W. J. Adriaan Sachtler, John J. Low, Craig M. Jensen, Vidvuds Ozolins, Don Siegel und Laurel Harmon. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods. Office of Scientific and Technical Information (OSTI), Februar 2011. http://dx.doi.org/10.2172/1004939.
Der volle Inhalt der Quelle