Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Metal-containing nanoparticles“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Metal-containing nanoparticles" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Metal-containing nanoparticles"
Wang, Ji Fen, Hua Qing Xie, Zhong Xin, Yang Li und Jing Li. „Thermal Properties of Composites Containing Metal Oxide Nanoparticles“. Materials Science Forum 694 (Juli 2011): 146–49. http://dx.doi.org/10.4028/www.scientific.net/msf.694.146.
Der volle Inhalt der QuelleKapustina, E. A., E. A. Titov und М. А. Novikov. „GENOTOXICITY OF METAL-CONTAINING NANOPARTICLES“. Aerospace and Environmental Medicine 56, Nr. 1 (2022): 26–31. http://dx.doi.org/10.21687/0233-528x-2022-56-1-26-31.
Der volle Inhalt der QuelleZheng, Bin, Mutsunori Uenuma, Yukiharu Uraoka und Ichiro Yamashita. „Bioconjugates Containing Ferritin and Metal Nanoparticles“. Advanced Materials Research 463-464 (Februar 2012): 833–36. http://dx.doi.org/10.4028/www.scientific.net/amr.463-464.833.
Der volle Inhalt der QuelleKurbanova, N. I., Z. N. Huseynova, N. Y. Ishenko, A. T. Aliyev, T. M. Guliyeva, S. K. Ragimova und S. A. Rzaeva. „METAL-CONTAINING NANOPARTICLES IN A MALEINIZED POLYETHYLENE MATRIX AS NANOFILLERS FOR POLYPROPYLENE“. Azerbaijan Chemical Journal, Nr. 1 (19.03.2019): 54–58. http://dx.doi.org/10.32737/0005-2531-2019-1-54-58.
Der volle Inhalt der QuelleLiu, Fangfei, und Xiong Liu. „Amphiphilic Dendronized Copolymer-Encapsulated Au, Ag and Pd Nanoparticles for Catalysis in the 4-Nitrophenol Reduction and Suzuki–Miyaura Reactions“. Polymers 16, Nr. 8 (12.04.2024): 1080. http://dx.doi.org/10.3390/polym16081080.
Der volle Inhalt der QuellePaulraj, Prabhavathi, Sankareswaran Muruganantham, Anbalagan S, Manikandan A und Karthikeyan G. „GREEN SYNTHESIS AND CHARACTERIZATION OF SILVER NANOPARTICLES FROM WITHANIA SOMNIFERA (L.) DUNAL“. Asian Journal of Pharmaceutical and Clinical Research 9, Nr. 5 (01.09.2016): 34. http://dx.doi.org/10.22159/ajpcr.2016.v9i5.13204.
Der volle Inhalt der QuelleBatsmanova, Ludmila, Nataliya Taran, Yevheniia Konotop, Svitlana Kalenska und Nataliya Novytska. „Use of a colloidal solution of metal and metal oxide-containing nanoparticles as fertilizer for increasing soybean productivity“. Journal of Central European Agriculture 21, Nr. 2 (2020): 311–19. http://dx.doi.org/10.5513/jcea01/21.2.2414.
Der volle Inhalt der QuelleGouda, M., AA Hebeish und AI Aljaafari. „New route for development of electromagnetic shielding based on cellulosic nanofibers“. Journal of Industrial Textiles 46, Nr. 8 (21.01.2016): 1598–615. http://dx.doi.org/10.1177/1528083715627166.
Der volle Inhalt der QuelleВалуева, С. В., Л. Н. Боровикова, М. Э. Вылегжанина, О. В. Назарова und Е. Ф. Панарин. „Стабилизированные (био)полимерами наночастица металлов и металлоида: спектральные и структурно-морфологические характеристики“. Журнал технической физики 92, Nr. 7 (2022): 924. http://dx.doi.org/10.21883/jtf.2022.07.52645.315-21.
Der volle Inhalt der QuelleKalenskii, A. V., A. A. Zvekov, E. V. Galkina und D. R. Nurmuhametov. „Modeling spectral properties of transparent matrix composites containing core-shell nanoparticles“. Computer Optics 42, Nr. 2 (24.07.2018): 254–62. http://dx.doi.org/10.18287/2412-6179-2018-42-2-254-262.
Der volle Inhalt der QuelleDissertationen zum Thema "Metal-containing nanoparticles"
Ferrari, Federico. „Synthesis of Metal-Binding Ligand-Containing Copolymers, Nanoparticles and Blends“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19186/.
Der volle Inhalt der QuelleYu, Zhao. „Syntheses and Sensing Applications of Modified Noble Metal-containing Nanoparticles“. University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1623251284619434.
Der volle Inhalt der QuelleDonoeva, Baira. „Study of catalytic and biological activity of gold-containing metal nanoparticles“. Thesis, University of Canterbury. Chemistry, 2014. http://hdl.handle.net/10092/9761.
Der volle Inhalt der QuelleBuso, Dario. „Sol-Gel Films containing Metal and Semiconductor Nanoparticles for Gas Sensing“. Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3426274.
Der volle Inhalt der QuelleGankanda, Aruni. „Heterogeneous and multiphase chemistry of trace atmospheric gases with mineral dust and other metal containing particles“. Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/3090.
Der volle Inhalt der QuelleAndré, Rémi F. „Tailored routes to metal-containing nanoparticles for hydrogenation reactions in solution : surface design for H2 activation“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS190.pdf.
Der volle Inhalt der QuelleIn this thesis work, the use of metal-containing nanoparticles such as carbides, oxides and phosphides is explored for colloidal catalysis. In an attempt to build a Frustrated Lewis Pair (FLP)-like catalytic system for H2 activation, the synergy with a molecular Lewis base is assessed. In the bibliographic introduction, the stakes and the challenges of H2 activation in solvent are presented, with an emphasis on the use of non-purely metallic catalysts for the hydrogenation of model compounds. In the first part, early transition metal carbides and hydrides are synthesized via solid-state metathesis. The influence of process parameters is explored to tune the phase speciation in the products. The most promising carbon-supported catalysts, Mo2C/C and W2C/C, are studied for gas phase and liquid phase hydrogenations of olefins. In the second part, cerium and indium oxides are obtained via hydrothermal pathways. The relevance of oxygen defects in CeO2-x is established for H2 gas phase activation and semi-hydrogenation of phenylacetylene in solvent. The last part is dedicated to the non-aqueous syntheses of molybdenum and tungsten oxides, and nickel carbide and phosphides. The syntheses mechanisms are studied by means of NMR for the organic species and XAS and XRD for the nature of the inorganic species. The catalytic activity of the unsupported nanoparticles is finally evaluated for the hydrogenation of nitrobenzene and phenylacetylene in various solvents
Lee, W. W. Y. „Polymer films containing SERS active metal nanoparticles for therapeutic drug monitoring and forensic analysis“. Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678709.
Der volle Inhalt der QuelleErhard, Felix Maria Maximilian. „Synthesis and catalytic applications of ruthenium- and iron-based nanoparticles from the pyrolysis of metal-containing homopolymers and block copolymers“. Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658315.
Der volle Inhalt der QuelleMirza, Nasiri Nooshin Mirza. „Novel Metal-Containing Nanoparticle Composites for Cancer Therapy and Imaging“. Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1707253/.
Der volle Inhalt der QuelleLê, Thi Kim-Chi. „Oxygen Reduction Reaction with Molybdenum-Containing Oxysulfide Nanoparticles : from Colloidal Synthesis to Surface Activity“. Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS209.pdf.
Der volle Inhalt der QuelleToday, in personal vehicles, fuel cells are competing with the Li-ion batteries to provide the next technological leap. Hence, replacing noble metal by non-noble metal catalysts is essential to make them affordable. Molybdenum can be a good candidate as some compounds (e.g. MoS2, MoO2) are showing activity for the Oxygen Reduction Reaction (ORR). Uncommon molybdenum oxysulfides could be used as electrodes for Li-ion batteries or catalysts thanks to their porous structure in amorphous forms (thin films and bulk powders). Their colloidal synthesis at low temperature, favoring the nanoscaled materials and bypassing the simple energy-consuming synthesis, is barely reported. The same goes for their ORR catalytic reactivity, which was almost never studied. Here, the well-known colloidal synthesis of lanthanide oxysulfides at low temperature (around 300 °C), producing nanoparticles such as Gd2O2S, is extended to the use of Mo molecular precursors. We studied two pathways: by a two-step protocol (adding the Mo precursor to freshly formed, unwashed Gd2O2S nanoplates) or a one-step protocol (adding simultaneously both metallic precursors). The structural analysis showed that the first method possibly leads to a deposition of isolated molybdate tetrahedrons on Gd2O2S nanoplates without changing their shape and size, while the latter one leads to a more sulfide-like environment of Mo. As observed, only molybdate-doped samples (at low dose) showed positive results in terms of electrochemical activity, which is found related directly to the Mo’s presence. Other explorative work on the syntheses without Gd is being pursued to complement the study on the structure and the formation mechanism of the interested materials. Overall, this is the first attempt to synthesize molybdenum oxysulfide by applying the synthesis method of lanthanide oxysulfide
Buchteile zum Thema "Metal-containing nanoparticles"
Berkovich, Inbal, Victoria Kobernik, Stefano Guidone und Norberto Gabriel Lemcoff. „Metal Containing Single-Chain Nanoparticles“. In Single-Chain Polymer Nanoparticles, 217–57. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527806386.ch6.
Der volle Inhalt der QuelleStalmashonak, Andrei, Gerhard Seifert und Amin Abdolvand. „Optical Properties of Nanocomposites Containing Metal Nanoparticles“. In SpringerBriefs in Physics, 5–15. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00437-2_2.
Der volle Inhalt der QuelleTanaka, Koichiro. „Ultrafast Spectroscopy of Glass Materials Containing Metal Nanoparticles“. In Springer Series in Photonics, 401–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58469-5_31.
Der volle Inhalt der QuelleCorrias, Anna, und Maria Francesca Casula. „Aerogels Containing Metal, Alloy, and Oxide Nanoparticles Embedded into Dielectric Matrices“. In Aerogels Handbook, 335–63. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7589-8_16.
Der volle Inhalt der QuelleCorrias, Anna, Danilo Loche und Maria Francesca Casula. „Aerogels Containing Metal, Alloy, and Oxide Nanoparticles Embedded into Dielectric Matrices“. In Springer Handbook of Aerogels, 809–33. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-27322-4_31.
Der volle Inhalt der QuelleSlaveykova, Vera I. „Chapter 5. Phytoplankton Controls on the Transformations of Metal-containing Nanoparticles in an Aquatic Environment“. In Chemistry in the Environment, 113–31. Cambridge: Royal Society of Chemistry, 2022. http://dx.doi.org/10.1039/9781839166570-00113.
Der volle Inhalt der QuelleFalfushynska, Halina, Inna Sokolova und Rostyslav Stoika. „Uptake, Biodistribution, and Mechanisms of Toxicity of Metal-Containing Nanoparticles in Aquatic Invertebrates and Vertebrates“. In Biomedical Nanomaterials, 227–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76235-3_9.
Der volle Inhalt der QuelleHuang, Yunpeng, Shige Wang, Mingwu Shen und Xiangyang Shi. „Hybrid Metal Nanoparticle-Containing Polymer Nanofibers for Environmental Applications“. In Nanomaterials for Environmental Protection, 95–108. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118845530.ch6.
Der volle Inhalt der QuelleKumar, Sudheer, Sukhila Krishnan, Sushanta Kumar Samal, Smita Mohanty und Sanjay Kumar Nayak. „Polymer Nanocomposites Coating for Anticorrosion Application“. In Polymer Nanocomposites for Advanced Engineering and Military Applications, 254–94. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7838-3.ch009.
Der volle Inhalt der QuelleKumar, Sudheer, Sukhila Krishnan, Sushanta Kumar Samal, Smita Mohanty und Sanjay Kumar Nayak. „Polymer Nanocomposites Coating for Anticorrosion Application“. In Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, 1093–134. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8591-7.ch045.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Metal-containing nanoparticles"
Lee, Tae-Woo, Himanshu Tyagi, David Sonenschein, Patrick E. Phelan, Ravi Prasher, Robert Peck und Paul Arentzen. „Ignition and Combustion Characteristics of Liquid Fuel Droplets Containing Metal Nanoparticles“. In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56466.
Der volle Inhalt der QuelleKudryashova, O., S. Vorozhtsov, Ya Dubkova und M. Stepkina. „Mechanisms of acoustic processing of a metal melt containing nanoparticles“. In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966416.
Der volle Inhalt der QuelleKudryashova, O. B., S. A. Vorozhtsov, M. Yu Stepkina und A. P. Khrustalyov. „Ultrasonic impact on a metal melt containing electrostatically charged nanoparticles“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2017 (AMHS’17). Author(s), 2017. http://dx.doi.org/10.1063/1.5013793.
Der volle Inhalt der QuelleIto, Kyohei, Shuhei Inoue und Yukihiko Matsumura. „Synthesis of Single-Walled Carbon Nanotube Containing Platinum Group Element“. In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44257.
Der volle Inhalt der QuelleDuan, Xuan-Ming, Hong-Bo Sun, Koshiro Kaneko und Satoshi Kawata. „Fabrication of polymeric 3D structure containing metal/metal oxide nanoparticles by two-photon processes“. In Optical Science and Technology, SPIE's 48th Annual Meeting, herausgegeben von A. Todd Yeates, Kevin D. Belfield, Francois Kajzar und Christopher M. Lawson. SPIE, 2003. http://dx.doi.org/10.1117/12.505406.
Der volle Inhalt der QuelleElouga Bom, L. B., J. Abdul-Hadi und T. Ozaki. „High-order harmonics from targets containing an abundance of metal nanoparticles“. In 2008 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2008. http://dx.doi.org/10.1109/cleo.2008.4551130.
Der volle Inhalt der QuelleAugustine, Robin. „Electrospun polymer nanocomposite scaffolds containing metal oxide nanoparticles for diabetic wound healing“. In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2018. http://dx.doi.org/10.5339/qfarc.2018.hbpd1163.
Der volle Inhalt der QuelleKhattab, Ahmed, Leopold Streletz, Kamy Thavanesan, Becky Jupp, Ibtisam Ali, Eluzai Hakim, Utpal Naghotra et al. „Electrospun polymer nanocomposite scaffolds containing metal oxide nanoparticles for diabetic wound healing“. In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2018. http://dx.doi.org/10.5339/qfarc.2018.hbpd127.
Der volle Inhalt der QuelleRudenko, Valentyn, Anatolii Tolochko, Svitlana Bugaychuk, Dmytro Zhulai, Gertruda Klimusheva, Galina Yaremchuk, Tatyana Mirnaya und Yuriy Garbovskiy. „Optical Nonlinearities of Unusual Liquid Crystal Glasses Containing Metal, Bimetallic, and Carbon Nanoparticles“. In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jm7a.21.
Der volle Inhalt der QuelleLaroque, Leonard, Abhishek Jain, Tie Wang, Karthik Chinnathambi, Ganapathiraman Ramanath und Theodorian Borca Tasciuc. „Electrowetting of Nanofluids Containing Silver Nanoparticles“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68836.
Der volle Inhalt der Quelle