Auswahl der wissenschaftlichen Literatur zum Thema „Metal complexes“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Metal complexes" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Metal complexes":

1

Nabeshima, Tatsuya, Yusuke Chiba, Takashi Nakamura und Ryota Matsuoka. „Synthesis and Functions of Oligomeric and Multidentate Dipyrrin Derivatives and their Complexes“. Synlett 31, Nr. 17 (24.07.2020): 1663–80. http://dx.doi.org/10.1055/s-0040-1707155.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The dipyrrin–metal complexes and especially the boron complex 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) have recently attracted considerable attention because of their interesting properties and possible applications. We have developed two unique and useful ways to extend versatility and usefulness of the dipyrrin complexes. The first one is the linear and macrocyclic oligomerization of the BODIPY units. These arrangements of the B–F moieties of the oligomerized BODIPY units provide sophisticated functions, such as unique recognition ability toward cationic guest, associated with changes in the photophysical properties by utilizing unprecedented interactions between the B–F and a cationic species. The second one is introduction of additional ligating moieties into the dipyrrin skeleton. The multidentate N2Ox dipyrrin ligands thus obtained form a variety of complexes with 13 and 14 group elements, which are difficult to synthesize using the original N2 dipyrrin derivatives. Interestingly, these unique complexes exhibit novel structures, properties, and functions such as guest recognition, stimuli-responsive structural conversion, switching of the optical properties, excellent stability of the neutral radicals, etc. We believe that these multifunctional dipyrrin complexes will advance the basic chemistry of the dipyrrin complexes and develop their applications in the materials and medicinal chemistry fields.1 Introduction2 Linear Oligomers of Boron–Dipyrrin Complexes3 Cyclic Oligomers of Boron–Dipyrrin Complexes4 A Cyclic Oligomer of Zinc–Dipyrrin Complexes5 Group 13 Element Complexes of N2Ox Dipyrrins6 Chiral N2 and N2Ox Dipyrrin Complexes7 Group 14 Element Complexes of N2O2 Dipyrrins8 Other N2O2 Dipyrrin Complexes with Unique Properties and Functions9 Conclusion
2

Sethi, Pooja, Rajshree Khare und Renuka Choudhary. „Complexes of Pyrimidine Thiones: Mechanochemical Synthesis and Biological Evaluation“. Asian Journal of Chemistry 32, Nr. 10 (2020): 2594–600. http://dx.doi.org/10.14233/ajchem.2020.22813.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A new series of metal complexes with 1-(2-methylphenyl)-4,4,6-trimethyl pyrimidine-2-thione (2-HL1) and 1-(4-methylphenyl)-4,4,6-trimethyl pyrimidine-2-thione (4-HL2) ligands, [M(mppt)2(H2O)n] (M(II) = Cu, Mn, Co; n = 2 and M(II) = Ni, Zn; n = 0) have been synthesized using mechanochemical protocol. The complexes have been framed as [M(mppt)2(H2O)n] due to 1:2 (metal:ligand) nature of these metal complexs. Structures have been further confirmed on the basis of elemental analysis, Magnetic susceptibility measurements, electronic, infrared, far infrared, proton NMR, Mass spectral moment and thermogravimetric analysis studies. The infrared spectral data suggested that ligand behaves as a bidentate, coordinating through – N (endocyclic) and – S (exocyclic) donor atoms. All the compounds have also been screened for antibacterial and DNA photocleavage potential. Ligands complexed with Mn and Ni metals have shown the effect of substitution on their biological potentials. It was found that substitution at 4th or para position makes the ligand and its metal complexes have better antibacterial and DNA photocleaving agents.
3

Prema. S, Prema S., und Leema Rose. A. „Metal Complexes of Phenyl Glycine-O-Carboxylic Acid: Preparation, Characterization, Electrochemical and Biological Properties“. Oriental Journal Of Chemistry 38, Nr. 3 (30.06.2022): 698–708. http://dx.doi.org/10.13005/ojc/380321.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Metal complexes are the effective therapeutic compound and it became more emerging field in the drug discovery and delivery. A novel ligand phenyl-glycine -o- carboxylic acid was synthesized and further complexed with the metal (II) chlorides. The synthesized metal complexes was interpreted by FT-IR spectroscopy, Ultra Violet- visible, 1H-NMR, molar conductance, magnetic susceptibility and thermogravimetric study. The electrochemical properties of the ligand and its complexes were inquired in DMF. Antibacterial and fungal activities of the phenyl-glycine -o- carboxylic acid (ligand) and metal complexes were analyzed by three fungal and four bacteria pathogens. The ligand has no activity against Aspergillus terreus, but nickel, copper and cobalt chloride complexes showed good activity against Aspergillus terreus. On anti-bacterial activity compare to ligands and other metal (II) complexes the cobalt (II) complex revealed greater inhibition effect on selected bacteria.
4

Irfandi, Rizal, Indah Raya, Ahyar Ahmad, Ahmad Fudholi, Hasnah Natsir, Desy Kartina, Harningsih Karim, Santi Santi und Subakir Salnus. „Review on Anticancer Activity of Essential Metal Dithiocarbamate Complexes“. Indonesian Journal of Chemistry 22, Nr. 6 (08.08.2022): 1722. http://dx.doi.org/10.22146/ijc.73738.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The importance of essential metal ions and their metal complexes in the creation of prospective medical therapies has long been recognized. In chemistry, molecular biology, and medicinal fields; the interaction of metal complexes with DNA has been a subject of study. The dithiocarbamate essential metal complex is described extensively in the literature for its various benefits and advantages. With proper use of ligands, it is proven to increase the cytotoxic activity of metal complexes against cancer cells. Some researches have shown significant progress regarding the biological activities of the dithiocarbamate essential metal complex as antimicrobial, antioxidant, and anticancer agents. Metal complexes form complexes with dithiocarbamate ligands with unique structural variations. In this study, we presented an overview of the cytotoxic effects of some dithiocarbamate essential metal complexes on cancer cells, as well as fresh approaches to the design of essential metal-based therapeutics containing dithiocarbamate and molecular targets in cancer therapy. This review may provide an update on recent developments in the medicinal use of essential metals with dithiocarbamate ligands, carried out to identify recent relevant literature. Finally, we predict that the essential metal complexed with dithiocarbamate can be a new breakthrough in the future development of cancer drugs.
5

Sumrra, Sajjad Hussain, Muhammad Ibrahim, Sabahat Ambreen, Muhammad Imran, Muhammad Danish und Fouzia Sultana Rehmani. „Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N, O Donor Schiff Bases“. Bioinorganic Chemistry and Applications 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/812924.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
New series of three bidentate N, O donor type Schiff bases(L1)–(L3)were prepared by using ethylene-1,2-diamine with 5-methyl furfural, 2-anisaldehyde, and 2-hydroxybenzaldehyde in an equimolar ratio. These ligands were further complexed with Co(II), Cu(II), Ni(II), and Zn(II) metals to produce their new metal complexes having an octahedral geometry. These compounds were characterized on the basis of their physical, spectral, and analytical data. Elemental analysis and spectral data of the uncomplexed ligands and their metal(II) complexes were found to be in good agreement with their structures, indicating high purity of all the compounds. All ligands and their metal complexes were screened for antimicrobial activity. The results of antimicrobial activity indicated that metal complexes have significantly higher activity than corresponding ligands. This higher activity might be due to chelation process which reduces the polarity of metal ion by coordinating with ligands.
6

NOMURA, Mitsushiro, Satoshi HORIKOSHI und Masatsugu KAJITANI. „Metal Dithiolene Complexes“. Journal of the Japan Society of Colour Material 82, Nr. 7 (2009): 296–305. http://dx.doi.org/10.4011/shikizai.82.296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Trachevskii, V. V., S. V. Zimina und E. P. Rodina. „Thiosulfate metal complexes“. Russian Journal of Coordination Chemistry 34, Nr. 9 (September 2008): 664–69. http://dx.doi.org/10.1134/s1070328408090066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

De Clercq, Erik. „Antiviral Metal Complexes“. Metal-Based Drugs 4, Nr. 3 (01.01.1997): 173–92. http://dx.doi.org/10.1155/mbd.1997.173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The initial events (virus adsorption and fusion with the cells) in the replicative cycle of human immunodeficiency virus (HIV) can serve as targets for the antiviral action of metal-binding compounds such as polyanionic compounds (polysulfates, polysulfonates, polycarboxylates, polyoxometalates, and sulfonated or carboxylated metalloporphyrins), bicyclams and G-octet-forming oligonucleotides. The adsorption and fusion of HIV with its target cells depends on the interaction of the viral envelope glycoproteins (gp 120) with the receptors (CD4, CXCR4) at the outer cell membrane. We are currently investigating how the aforementioned compounds interfere with these viral glycoproteins and/or cell receptor.
9

ZURER, PAMELA. „METAL-DINITROGEN COMPLEXES“. Chemical & Engineering News 75, Nr. 10 (10.03.1997): 9. http://dx.doi.org/10.1021/cen-v075n010.p009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Vrieze, K., und G. Van Koten. „Metal heterodiene complexes“. Inorganica Chimica Acta 100, Nr. 1 (Mai 1985): 79–96. http://dx.doi.org/10.1016/s0020-1693(00)88296-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Metal complexes":

1

Brayshaw, Simon Keith. „Metal complexes bearing pendant alkynes and metal complexes of N-heterocyclic carbenes“. University of Western Australia. School of Biomedical and Chemical Sciences, 2004. http://theses.library.uwa.edu.au/adt-WU2005.0017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis is comprised of two parts. The first part describes the synthesis of cyclopentadienyltungsten complexes containing a pendant alkyne group (I), and the subsequent photo-induced intramolecular coordination of the alkyne, forming complexes such as II. Compounds containing intramolecularly coordinated alkynes are rare, and this is the first example using cyclopentadiene as the core ligand. The second part describes the synthesis and structural characterisation of a number of novel metal complexes containing N-heterocyclic carbene ligands, some containing particular functionality for taylored applications. New methods were used to form complexes of rhodium, iridium, silver and gold (eg. III, IV). Structural and spectroscopic properties of the complexes were correlated with electronic characteristics of the ancillary ligands. A number of rhodium and iridium complexes (eg. IV) derived from imidazolium-linked cyclophanes were synthesised and structurally characterised. Complexes of N-heterocyclic carbenes with pendant ionic groups were synthesised, and a preliminary examination of their catalytic activity in water was performed. N-Heterocyclic carbenes complexes containing an electron withdrawing nitro group were synthesised and the effect of the nitro group on metal-ligand bonding was examined.
2

Barron, Andrew Ross. „Transition metal aluminohydride complexes“. Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/37935.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Alem, Nassreen. „Zeolite encapsulated metal complexes“. Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jasim, Naseralla. „Transition metal bifluoride complexes“. Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323538.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ho, Kin-ying. „Synthesis, characterization and spectroscopic properties of d6 and d10 metal complexes with pyridyl amine ligands /“. Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20667905.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jones, Simon C. „Metal-metal coupling in bi- and multimetallic systems : organometallic pentalene and group 14-bridged cyclopentadienyl complexes of transition metals“. Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Humphrey, Elizabeth Rebecca. „Tris(pyrazolyl)borate metal complexes : new ligands and metal-metal interactions“. Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhao, Ningfeng Eichhorn David M. „Cyano-substituted polypyrazolylborate metal complexes“. Diss., Click here for available full-text of this thesis, 2005. http://library.wichita.edu/digitallibrary/etd/2005/d019.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (Ph.D.)--Wichita State University, College of Liberal Arts and Sciences, Dept. of Chemistry.
"December 2005." Title from PDF title page (viewed on February 8, 2007). Thesis adviser: David Eichhorn. Includes bibliographic references (leaves 123-128).
9

Rao, Sumitrananda N. R. „Novel adsorbents using metal complexes“. Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/10200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Felsher, Dave. „Electrowinning of metal - DETA complexes“. Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33329.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Sludges formed by lime treatment of acidic mine effluents are a widespread environmental hazard. One treatment option is to recover the toxic and potentially valuable contained metals. A method has been reported to selectively recover the metals by leaching with a complexing agent, diethylenetriamine (DETA). In this thesis a novel method has been developed to recover metals from the metal---DETA complexes by direct electrowinning. Copper was studied initially as a test system due to the relative ease with which it is recovered in conventional sulphate electrowinning. The main industrial interest, and hence the main focus of the work, is in the nickel---DETA system. For both metals, initially batch tests were run to determine acceptable electrowinning conditions. These were followed by recycle tests to simulate a potential process flowsheet. In the nickel-DETA system the effects of pH, nickel concentration, temperature, and DETA to nickel ratio on current efficiency were determined.
Recycle tests for copper showed that a steady DETA concentration was achieved after ca. six hours. In the case of nickel, the system seemed to continually deteriorate. A pH range of 4.6 to 4.8 maximized the current efficiency, due to a competition between hydrogen formation at low pH and increased complex stability at high pH. Both increasing Ni concentration and temperature increased the current efficiency, while increasing the DETA to nickel ratio lowered it.

Bücher zum Thema "Metal complexes":

1

Tomasik, Piotr. Pyridine-metal complexes. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hartley, F. R. Supported Metal Complexes. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5247-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Voloshin, Yan, Irina Belaya und Roland Krämer. Cage Metal Complexes. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56420-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ciardelli, F., E. Tsuchida und D. Wöhrle, Hrsg. Macromolecule-Metal Complexes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-60986-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tomasik, Piotr. Pyridine-metal complexes. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tomasik, Piotr. Pyridine-metal complexes. Herausgegeben von Ratajewicz Zbigniew, Newkome George R und Strekowski Lucjan. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tomasik, Piotr. Pyridine-metal complexes. Herausgegeben von Ratajewicz Zbigniew, Newkome George R und Strekowski Lucjan. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tomasik, Piotr. Pyridine-metal complexes. Herausgegeben von Ratajewicz Zbigniew, Newkome George R und Strekowski Lucjan. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tomasik, Piotr. Pyridine-metal complexes. Herausgegeben von Ratajewicz Zbigniew, Newkome George R und Strękowski Lucjan. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

F, Ciardelli, Tsuchida E. 1930- und Wöhrle Dieter 1939-, Hrsg. Macromolecule-metal complexes. Berlin: Springer, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Metal complexes":

1

Farrell, Nicholas. „Metals, Metal Complexes, and Radiation“. In Transition Metal Complexes as Drugs and Chemotherapeutic Agents, 183–207. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-7568-5_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chaloner, Penny A., Miguel A. Esteruelas, Ferenc Joó und Luis A. Oro. „Supported Metal Complexes“. In Catalysis by Metal Complexes, 241–53. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-1791-5_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Markó, L., J. Takács, Kenton H. Whitmire, B. A. Matrana und H. D. Kaesz. „Trinuclear Metal Complexes“. In Inorganic Syntheses, 243–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132579.ch42.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Govindrajan, Subbiah, und Singanahally T. Aruna. „Hydrazinium Metal Complexes“. In Inorganic Hydrazine Derivatives, 171–218. Chichester, United Kingdom: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118693599.ch05.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ingraham, Llyod L., und Damon L. Meyer. „Metal-Dioxygen Complexes“. In Biochemistry of Dioxygen, 113–20. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2475-1_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hoffman, M. Z. „Of Metal Complexes“. In Inorganic Reactions and Methods, 276–77. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145302.ch110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gates, B. C. „Supported Metal Complexes“. In Inorganic Reactions and Methods, 36–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145319.ch18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rây, Priyadaranjan, und W. Conard Fernelius. „Metal Biguanide Complexes“. In Inorganic Syntheses, 65–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132371.ch19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wani, Mohmmad Younus, und Manzoor Ahmad Malik. „Anticancer Metal Complexes“. In Gold and its Complexes in Anticancer Chemotherapy, 35–39. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6314-4_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mishra, Munmaya, und Biao Duan. „Polymer Metal Complexes“. In The Essential Handbook of Polymer Terms and Attributes, 168–69. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Metal complexes":

1

Brewer, Karen J., Shawn Swavey, Rodd L. Williams, Zhenglai Fang und Elizabeth R. Bullock. „Designing mixed-metal supramolecular complexes“. In Complex Adaptive Structures, herausgegeben von William B. Spillman, Jr. SPIE, 2001. http://dx.doi.org/10.1117/12.446777.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lee, Taewoo, Christian Reich, Christopher M. Laperle, Xiaodi Li, Margaret Grant, Christoph G. Rose-Petruck und Frank Benesch-Lee. „Ultrafast XAFS of transition metal complexes“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/up.2006.wd4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fukaya, Toshio, Masagi Mizuno, Shigeo Murata und Akihiro Mito. „THG properties of metal-dithiolene complexes“. In OE/LASE '92, herausgegeben von Robert A. Fisher und John F. Reintjes. SPIE, 1992. http://dx.doi.org/10.1117/12.58089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hulubei, C., E. Hamciuc, M. Bruma und M. Ignat. „Polymer blends containing maleimide-metal complexes“. In 2008 International Semiconductor Conference. IEEE, 2008. http://dx.doi.org/10.1109/smicnd.2008.4703401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Al-Khaykanee, Mohsin K., Faeq A. Al-Temimei, A. A. Al-Jobory, Dhay Ali Sabur und Hamid I. Abbood. „Thermoelectric properties of platinum metal complexes“. In THE 7TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY (ICAST 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5123090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Singh, Nidhi, Satya, Kulsum Hashmi, Sakshi Gupta und Seema Joshi. „Cytotoxic Activity of Metal Nanoparticle Complexes“. In ASEC 2023. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/asec2023-15242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

MOISEEV, ILYA I. „METAL COMPLEX CATALYSIS OF OXIDATION REACTIONS: CATALYSIS WITH PALLADIUM COMPLEXES“. In Proceedings of the NIOK (Netherlands Institute for Catalysis Research) Course on Catalytic Oxidation. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503884_0010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Swavey, Shawn, Rodd L. Williams, Zhenglai Fang, Matthew Milkevitch und Karen J. Brewer. „DNA binding of supramolecular mixed-metal complexes“. In Complex Adaptive Structures, herausgegeben von William B. Spillman, Jr. SPIE, 2001. http://dx.doi.org/10.1117/12.446779.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Slinker, Jason, Dan Bernards, Samuel Flores-Torres, Stefan Bernhard, Paul L. Houston, Héctor D. Abruña und George G. Malliaras. „Light emitting diodes from transition metal complexes“. In Frontiers in Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fio.2003.wnn2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Latouche, Camille, Vincenzo Barone und Julien Bloino. „ANHARMONIC VIBRATIONAL SPECTROSCOPY ON METAL TRANSITION COMPLEXES“. In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.rc08.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Metal complexes":

1

White, Carter James. Selenophene transition metal complexes. Office of Scientific and Technical Information (OSTI), Juli 1994. http://dx.doi.org/10.2172/10190649.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cotton, F. A., und S. C. Haefner. Metal-metal multiply bonded complexes of technetium. Final report. Office of Scientific and Technical Information (OSTI), März 1995. http://dx.doi.org/10.2172/434856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lawson, Chris M., und Gary M. Gray. New Metal Organic Nonlinear Optical Complexes. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2000. http://dx.doi.org/10.21236/ada391105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sharp, P. R. Late transition metal oxo and imido complexes. Office of Scientific and Technical Information (OSTI), Dezember 1992. http://dx.doi.org/10.2172/7017245.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fujita, Etsuko. Photoreduction of CO{sub 2} using metal complexes. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/211478.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Crosby, G. A. Investigations of charge-separation processes in metal complexes. Office of Scientific and Technical Information (OSTI), Februar 1991. http://dx.doi.org/10.2172/5943145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Theopold, K. H. [Oxidation catalysis with tris(pyrazolyl)borate metal complexes]. Office of Scientific and Technical Information (OSTI), Januar 1993. http://dx.doi.org/10.2172/6487292.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Du, Guodong. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/835301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sharp, P. R. Late transition metal. mu. -oxo and. mu. -imido complexes. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6332549.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rubin, Yves F. Total Synthesis of Buckminsterfullerene (C60) and Endohedral Metal Complexes. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada328578.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie