Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Metagratings“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Metagratings" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Metagratings"
Uzair, Mohammad, Xiao Li, Yangyang Fu und Chen Shen. „Diffraction in phase gradient acoustic metagratings: multiple reflection and integer parity design“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, Nr. 3 (01.08.2021): 3167–75. http://dx.doi.org/10.3397/in-2021-2320.
Der volle Inhalt der QuelleTsai, Wei-Cheng, Chia-Hsun Chang, Tai-Cherng Yu, Yi-Hsuan Huang, Chi-Wai Chow, Yu-Heng Hong, Hao-Chung Kuo und Yao-Wei Huang. „High-Efficiency and Large-Angle Homo-Metagratings for the Near-Infrared Region“. Photonics 11, Nr. 5 (24.04.2024): 392. http://dx.doi.org/10.3390/photonics11050392.
Der volle Inhalt der QuelleMei, Jun, Lijuan Fan und Xiaobin Hong. „Elastic Metagratings with Simultaneous Modulation of Reflected and Transmitted Waves“. Crystals 12, Nr. 7 (24.06.2022): 901. http://dx.doi.org/10.3390/cryst12070901.
Der volle Inhalt der QuelleRa’di, Younes, und Andrea Alù. „Nonreciprocal Wavefront Manipulation in Synthetically Moving Metagratings“. Photonics 7, Nr. 2 (18.04.2020): 28. http://dx.doi.org/10.3390/photonics7020028.
Der volle Inhalt der QuelleLin, Chuan-En, Chih-Wei Weng, Chao-Chang Hu und Peichen Yu. „P‐227: Late‐News Poster: Design Freeform Metagratings for Eye‐glow Attenuation in Diffractive AR Waveguides“. SID Symposium Digest of Technical Papers 55, Nr. 1 (Juni 2024): 1567–69. http://dx.doi.org/10.1002/sdtp.17857.
Der volle Inhalt der QuelleRa’di, Younes, und Andrea Alù. „Reconfigurable Metagratings“. ACS Photonics 5, Nr. 5 (12.03.2018): 1779–85. http://dx.doi.org/10.1021/acsphotonics.7b01528.
Der volle Inhalt der QuelleKOURCHI, Hasna, Simon BERNARD, Farid CHATI und Fernand LéON. „Metagratings for underwater acoustic wavefront manipulation“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, Nr. 9 (04.10.2024): 2231–39. http://dx.doi.org/10.3397/in_2024_3153.
Der volle Inhalt der QuellePanda, Soumyashree S., und Ravi S. Hegde. „A learning based approach for designing extended unit cell metagratings“. Nanophotonics 11, Nr. 2 (08.12.2021): 345–58. http://dx.doi.org/10.1515/nanoph-2021-0540.
Der volle Inhalt der QuelleShramkova, Oksana, Valter Drazic, Guillaume Bourcin, Bobin Varghese, Laurent Blondé und Valérie Allié. „Metagrating solutions for full color single-plate waveguide combiner“. EPJ Applied Metamaterials 9 (2022): 5. http://dx.doi.org/10.1051/epjam/2022003.
Der volle Inhalt der QuelleRaadi, Younes, und Andrea Alu. „Metagratings for Efficient Wavefront Manipulation“. IEEE Photonics Journal 14, Nr. 1 (Februar 2022): 1–13. http://dx.doi.org/10.1109/jphot.2021.3136202.
Der volle Inhalt der QuelleDissertationen zum Thema "Metagratings"
Tan, Zhen. „Electromagnetic metagratings for efficient wavefront manipulation“. Electronic Thesis or Diss., Paris 10, 2024. http://www.theses.fr/2024PA100031.
Der volle Inhalt der QuelleCompared to traditional metasurfaces, metagratings have demonstrated pronounced advantages in efficient wavefront manipulation in recent years. These advantages primarily stem from two key factors: first, metagratings effectively eliminate wave impedance mismatch between incoming and outgoing waves, thus facilitating near-optimal efficiency in wavefront manipulation. Second, the sparsely arranged and simplified structure of metagratings renders them significantly easier to fabricate compared to traditional metasurfaces, which often entail complex structural resolution requirements particularly at high frequencies. This doctoral research endeavors to establish a more intuitive and rigorous design methodology for metagrating-based wavefront manipulation while also exploring novel avenues in the domain. Conducted jointly by Université Paris Nanterre and Xi’an Jiaotong University, the study starts with a comprehensive analysis of the electromagnetic characteristics inherent to metagratings, aiming to elucidate the fundamental principles governing wavefront manipulation. This analysis encompasses the derivation of reflection and transmission coefficients in multilayered media, examination of radiation characteristics, and meticulous considerations for achieving optimal wavefront manipulation. Subsequent investigations deal with the design intricacies of reflective metagratings, addressing challenges and devising strategies for both single-beam and multi-beam radiations and for electromagnetic absorption, exploring the influence of diverse structural configurations on absorption bandwidth. Notably, the concept of zero load-impedance metagratings is introduced and potential applications are explored particularly in high-frequency band scenarios. Finally, the research extends its exploration to transmissive metagratings, aiming to demonstrate their capabilities in achieving diverse wavefront manipulations, encompassing anomalous reflection, anomalous refraction, beam splitting, uni- and bi-directional wave absorption, and asymmetrical wavefront manipulation
Kourchi, Hasna. „Μétaréseaux pοur la réflexiοn et la transmissiοn anοrmales de frοnts d’οnde acοustique dans l’eau“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH36.
Der volle Inhalt der QuelleA metagrating is a periodic assembly of scatterers designed to reflect or refract a wave toward an anomalous direction, not predicted by Snell's law. In this work, we designed, fabricated, and experimentally characterized such metagratings for the control of ultrasonic waves in water, using brass tubes and cylinders as well as 3D-printed plastic supports. These metagratings enable the redirection of an incident wavefront to an arbitrarily desired direction with high efficiency (close to 100%), both in reflection on a surface (e.g., the water/air interface) and in transmission. The theoretical approach is based on the principles of Bragg diffraction and constructive and destructive wave interactions. The results of this thesis demonstrate the efficiency of metagratings in inducing acoustic phenomena such as retroreflection and asymmetric wave response, achieved through the use of resonant and non-resonant structures, validated by finite element simulations and experiments. This research opens new perspectives for the manipulation of underwater acoustic waves, with potential applications in the fields of wave detection, absorption, and reflection in marine environments
Papou, Uladzislau. „Conformal and reconfigurable sparse metasurfaces : advanced analytical models and antenna applications“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC027.
Der volle Inhalt der QuelleThis PhD thesis deals with electromagnetic metasurfaces for wavefront manipulation represented by arrays of scatterers engineered at subwavelength scale. The manuscript develops novel analytical and numerical models that allow one to solve the inverse scattering problem by taking into account all interactions between elements of a metasurface. Specifically, the manuscript focuses on sparse arrays, periodic or not, of structured wires for the application to electronically reconfigurable antennas. The manuscript is divided into two main parts, one on periodic arrangements of wires called metagratings and one on sparse metasurfaces when there is no periodicity imposed. Each part is endorsed by experiments performed at microwave frequencies. In the first part, theoretical conditions for arbitrary control of the diffraction patterns with metagratings, whose period is composed of multiple individually-engineered wires, are established and importance of the near-field regulation is highlighted. Moreover, an analytical retrieval technique is developed and allows one to consider, with the help of full-wave simulations, arbitrarily structured wires for metagratings operating from microwave to optical domains. In the second part of the thesis, the analytical model of metagratings is generalized, from planar periodic, to arbitrarily-shaped non-periodic distributions of wires by means of numerical calculation of a Green’s function. The concept is applied to design sparse metasurfaces in Fabry-Perot cavity and semi-cylindrical antenna configurations. Finally, the approach is applied to design a reconfigurable planar sparse metasurface. A fabricated sample is exploited to experimentally demonstrate dynamic control of the far-field radiation pattern and the near-field intensity distribution. As such beam-steering, multi-beam manipulation and subdiffraction focusing are shown
Buchteile zum Thema "Metagratings"
Deng, Zi-Lan, Xiangping Li und Guixin Li. „Surface-Wave and Metagrating Holography“. In Metasurface Holography, 51–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-02386-6_6.
Der volle Inhalt der QuelleRane, Shreeya, und Dibakar Roy Chowdhury. „Excitation of Evanescent Orders by Employing Metallic Metagrating“. In Lecture Notes in Electrical Engineering, 101–5. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-4760-3_15.
Der volle Inhalt der QuelleZhang, Hong, Yuancheng Fan, Yali Zeng, Zhehao Ye, Hao Yue, Weixi Qiu, Ziyi Xu, Zhenning Yang und Fuli Zhang. „Broadband and Wide-Angle Terahertz Metagrating Based on Fractal Structure“. In Springer Proceedings in Physics, 161–65. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3913-4_31.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Metagratings"
Zhang, Ruimeng, Jiahui Ji, Ziang Jiang, Shixiong Wang und Jianjia Yi. „Microwave Bifunctional Polarization-selective Metagratings“. In 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/piers62282.2024.10618632.
Der volle Inhalt der QuelleZhou, Wei, und Xiao Ji. „Design of Reconfigurable Dual Polarized Metagratings“. In 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/aces-china62474.2024.10699757.
Der volle Inhalt der QuelleFoteinopoulou, Stavroula. „Polarized asymmetric transmission with passive all-dielectric metagratings“. In Laser Science, LW7F.3. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/ls.2024.lw7f.3.
Der volle Inhalt der Quellede Galarreta, Carlota Ruiz, Joe Shields, Miguel Alvarez Alegria, C. David Wright, Rosalia Serna und Jan Siegel. „Tailoring the Diffraction Characteristics of Reflective Metagratings Employing One-Step Residue-Free UV Laser Interference Patterning“. In CLEO: Applications and Technology, JTu2A.182. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.182.
Der volle Inhalt der QuelleMarcus, Sherman W., und Ariel Epstein. „Frequency-Agile Sliding Metagratings for Dynamic Wave Control“. In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 79–80. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686881.
Der volle Inhalt der QuellePonti, Cristina, und Nikolaos L. Tsitsas. „Achieving Anomalous Refraction with Truncated All-Dielectric Two-Element Metagratings“. In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 81–82. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10685943.
Der volle Inhalt der QuelleMarcus, Sherman W., und Ariel Epstein. „Sliding Metagratings for Dynamic Beam Switching via Rigorous Floquet-Bloch Theory“. In 2024 IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (COMCAS), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/comcas58210.2024.10666190.
Der volle Inhalt der QuelleWang, Shaojie, Ke Chen und Yijun Feng. „Frequency Beam Scanning with Wideband Dualpolarized Metagratings for Large-angle Incidence“. In 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/icmmt61774.2024.10672309.
Der volle Inhalt der QuelleZhu, Jiang, Wei Wei, Bo Chen, Ping Tang, Xiangyu Zhao und Chongzhao Wu. „Three-dimensional metagratings integrated with liquid-galinstan for surface-enhanced infrared sensing“. In 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/irmmw-thz60956.2024.10697875.
Der volle Inhalt der QuelleZhang, Cong, und Wen Qiao. „Large-format optical encryption device of vector light field based on pixelated metagratings“. In 4th International Conference on Laser, Optics and Optoelectronic Technology (LOPET 2024), herausgegeben von Suihu Dang und Manuel Filipe Costa, 41. SPIE, 2024. http://dx.doi.org/10.1117/12.3040046.
Der volle Inhalt der Quelle