Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Metabolic pathways analysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Metabolic pathways analysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Metabolic pathways analysis"
Barik, Dr Bibhuti Prasad. „In Silico Observations and Analysis of Metabolic Pathways“. International Journal of Scientific Research 2, Nr. 11 (01.06.2012): 44–48. http://dx.doi.org/10.15373/22778179/nov2013/14.
Der volle Inhalt der QuelleKatz, J. „Mathematical analysis of metabolic pathways“. American Journal of Physiology-Endocrinology and Metabolism 252, Nr. 4 (01.04.1987): E571—E572. http://dx.doi.org/10.1152/ajpendo.1987.252.4.e571.
Der volle Inhalt der QuelleForst, Christian V., und Klaus Schulten. „Phylogenetic Analysis of Metabolic Pathways“. Journal of Molecular Evolution 52, Nr. 6 (Juni 2001): 471–89. http://dx.doi.org/10.1007/s002390010178.
Der volle Inhalt der QuelleMoreno-Sánchez, Rafael, Emma Saavedra, Sara Rodríguez-Enríquez und Viridiana Olín-Sandoval. „Metabolic Control Analysis: A Tool for Designing Strategies to Manipulate Metabolic Pathways“. Journal of Biomedicine and Biotechnology 2008 (2008): 1–30. http://dx.doi.org/10.1155/2008/597913.
Der volle Inhalt der QuelleMattei, Gianluca, Zhuohui Gan, Matteo Ramazzotti, Bernhard O. Palsson und Daniel C. Zielinski. „Differential Expression Analysis Utilizing Condition-Specific Metabolic Pathways“. Metabolites 13, Nr. 11 (03.11.2023): 1127. http://dx.doi.org/10.3390/metabo13111127.
Der volle Inhalt der QuelleLiao, James C. „Modelling and analysis of metabolic pathways“. Current Opinion in Biotechnology 4, Nr. 2 (April 1993): 211–16. http://dx.doi.org/10.1016/0958-1669(93)90127-i.
Der volle Inhalt der QuelleArias-Méndez, Esteban, Diego Barquero-Morera und Francisco J. Torres-Rojas. „Low-Cost Algorithms for Metabolic Pathway Pairwise Comparison“. Biomimetics 7, Nr. 1 (21.02.2022): 27. http://dx.doi.org/10.3390/biomimetics7010027.
Der volle Inhalt der QuelleHuang, Yan, Rong Chen, Shuci Yang, Ye Chen und Xiaoying Lü. „The Mechanism of Interaction Between Gold Nanoparticles and Human Dermal Fibroblasts Based on Integrative Analysis of Transcriptomics and Metabolomics Data“. Journal of Biomedical Nanotechnology 18, Nr. 6 (01.06.2022): 1562–76. http://dx.doi.org/10.1166/jbn.2022.3365.
Der volle Inhalt der QuelleMashima, Izumi, Yu-Chieh Liao, Chieh-Hua Lin, Futoshi Nakazawa, Elaine M. Haase, Yusuke Kiyoura und Frank A. Scannapieco. „Comparative Pan-Genome Analysis of Oral Veillonella Species“. Microorganisms 9, Nr. 8 (20.08.2021): 1775. http://dx.doi.org/10.3390/microorganisms9081775.
Der volle Inhalt der QuelleLeiser, Scott, Christopher Choi, Ajay Bhat und Charles Evans. „A Metabolic Stress Response“. Innovation in Aging 4, Supplement_1 (01.12.2020): 123. http://dx.doi.org/10.1093/geroni/igaa057.404.
Der volle Inhalt der QuelleDissertationen zum Thema "Metabolic pathways analysis"
Lisowska, Beata. „Genomic analysis and metabolic modelling of Geobacillus thermoglucosidasius NCIMB 11955“. Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690738.
Der volle Inhalt der QuelleWilliams, H. E. „Mathematical modelling of metabolic pathways in pig muscle“. Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/42536/.
Der volle Inhalt der QuelleSakakibara, Norikazu. „Metabolic analysis of the cinnamate/monolignol and lignan pathways“. Kyoto University, 2005. http://hdl.handle.net/2433/145058.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(農学)
甲第11658号
農博第1514号
新制||農||911(附属図書館)
学位論文||H17||N4051(農学部図書室)
23301
UT51-2005-D407
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 島田 幹夫, 教授 關谷 次郎, 教授 坂田 完三
学位規則第4条第1項該当
Jaques, Colin Mark. „Modelling of metabolic pathways for Saccharopolyspora erythraea using flux balance analysis“. Thesis, University College London (University of London), 2004. http://discovery.ucl.ac.uk/1446668/.
Der volle Inhalt der QuelleGoel, Gautam. „Dynamic flux estimation a novel framework for metabolic pathway analysis /“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31769.
Der volle Inhalt der QuelleCommittee Chair: Voit, Eberhard O.; Committee Member: Butera, Robert; Committee Member: Chen, Rachel; Committee Member: Kemp, Melissa; Committee Member: Neves, Ana Rute. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Cunha, Oberdam de Lima. „SAMPA (System for Comparative Analysis of Metabolic PAthways) - uma comparação de vias metabólicas“. Laboratório Nacional de Computação Científica, 2008. http://www.lncc.br/tdmc/tde_busca/arquivo.php?codArquivo=161.
Der volle Inhalt der QuelleThe advent of genome sequencing technology and complete genome analysis has provided new data on prokaryote and eukaryote metabolic pathways. The comparative analysis of metabolic pathways from different organisms can help us understand inter and intra species organizational relationships. Having this in mind, this work focused on building a system that allows for comparing the bacterial metabolic pathways, according to a set of pre-established criteria. SAMPA (System for comparative Analysis of Metabolic PAthways) comprises a database containing information on metabolic pathways in many organisms, and a set of five tools that can be used to compare these metabolic pathways and to group organisms carrying metabolic pathways that are related. As a case study to validate the tool, we the Mycoplasmataceae family of organisms was used.
Antoniewicz, Maciek Robert. „Comprehensive analysis of metabolic pathways through the combined use of multiple isotopic tracers“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37457.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 287-294).
Metabolic Flux Analysis (MFA) has emerged as a tool of great significance for metabolic engineering and the analysis of human metabolic diseases. An important limitation of MFA, as carried out via stable isotope labeling and GC/MS measurements, is the large number of isotopomer equations that need to be solved. This restriction reduces the ability of MFA to fully utilize the power of multiple isotopic tracers in elucidating the physiology of complex biological networks. Here, we present a novel framework for modeling isotopic distributions that significantly reduces the number of system variables without any loss of information. The elementary metabolite units (EMU) framework is based on a highly efficient decomposition algorithm identifies the minimum amount of information needed to simulate isotopic labeling within a reaction network using knowledge of atomic transitions occurring in the network reactions. The developed computational and experimental methodologies were applied to two biological systems of major industrial and medical significance. First, we describe the analysis of metabolic fluxes in E. coli in a fed-batch fermentation for overproduction of 1,3-propanediol (PDO).
(cont.) A dynamic 13C-labeling experiment was performed and nonstationary intracellular fluxes (with confidence intervals) were determined by fitting labeling patterns of 191 cellular amino acids and 8 external fluxes to a detailed network model of E. coli. We established for the first time detailed time profiles of in vivo fluxes. Flux results confirmed the genotype of the organism and provided further insight into the physiology of PDO overproduction in E. coli. Second, we describe the analysis of metabolic fluxes in the pathway of gluconeogenesis in cultured primary hepatocytes, i.e. isolated liver cells. We applied multiple 13C and 2H-labeled tracers and measured isotopomer distributions of glucose fragments. From this overdetermined data set we estimated net and exchange fluxes in the gluconeogenesis pathway. We identified limitations in current methods to estimate gluconeogenesis in vivo, and developed a novel [U-13C,2Hs]glycerol method that allows accurate analysis of gluconeogenesis fluxes independent of the assumption of isotopic steady-state and zonation of tracers. The developed methodologies have wide implications for in vivo studies of glucose metabolism in Type II diabetes, and other metabolic diseases.
by Maciek Robert Antoniewicz.
Ph.D.
Beltrame, L. „Indentification of disregulated metabolic pathways by transcriptomic analysis in renal cell carcinoma samples“. Doctoral thesis, Università degli Studi di Milano, 2008. http://hdl.handle.net/2434/44738.
Der volle Inhalt der QuelleHenderson, David Allen. „Reconstruction of metabolic pathways by the exploration of gene expression data with factor analysis“. Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/30089.
Der volle Inhalt der QuellePh. D.
Zychlinski-Kleffmann, Anne Kathrin von. „Rice etioplast proteome analysis: Novel insights into the complexity of metabolic and regulatory pathways /“. Zürich : ETH, 2005. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16120.
Der volle Inhalt der QuelleBücher zum Thema "Metabolic pathways analysis"
service), ScienceDirect (Online, Hrsg. RNA turnover in eukaryotes: Nucleases, pathways and analysis of mRNA decay. San Diego, Calif: Academic, 2008.
Den vollen Inhalt der Quelle findenBacterial Cellular Metabolic Systems Metabolic Regulation Of A Cell System With 13cmetabolic Flux Analysis. Woodhead Publishing, 2012.
Den vollen Inhalt der Quelle findenSystems Biology: Constraint-Based Reconstruction and Analysis. Cambridge University Press, 2015.
Den vollen Inhalt der Quelle findenPalsson, Bernhard O. Systems Biology: Constraint-Based Reconstruction and Analysis. Cambridge University Press, 2015.
Den vollen Inhalt der Quelle findenLamari, Foudil, und Jean-Marie Saudubray. Disorders of Complex Lipids Synthesis and Remodeling. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0066.
Der volle Inhalt der QuelleVoit, Eberhard O., und Néstor V. Torres. Pathway Analysis and Optimization in Metabolic Engineering. Cambridge University Press, 2002.
Den vollen Inhalt der Quelle findenVoit, Eberhard O., und Néstor V. Torres. Pathway Analysis and Optimization in Metabolic Engineering. Cambridge University Press, 2004.
Den vollen Inhalt der Quelle findenPathway Analysis and Optimization in Metabolic Engineering. Cambridge University Press, 2002.
Den vollen Inhalt der Quelle findenVoit, Eberhard O., und Néstor V. Torres. Pathway Analysis and Optimization in Metabolic Engineering. Cambridge University Press, 2002.
Den vollen Inhalt der Quelle findenVoit, Eberhard O., und Néstor V. Torres. Pathway Analysis and Optimization in Metabolic Engineering. Cambridge University Press, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Metabolic pathways analysis"
Villadsen, John. „Primary Metabolic Pathways and Metabolic Flux Analysis“. In Fundamental Bioengineering, 39–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527697441.ch04.
Der volle Inhalt der QuelleMaudsley, Stuart, Wayne Chadwick, Liyun Wang, Yu Zhou, Bronwen Martin und Sung-Soo Park. „Bioinformatic Approaches to Metabolic Pathways Analysis“. In Methods in Molecular Biology, 99–130. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-160-4_5.
Der volle Inhalt der QuelleKopin, Irwin J. „Estimation of Magnitudes of Alternative Metabolic Pathways“. In Methods of Biochemical Analysis, 247–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470110294.ch5.
Der volle Inhalt der QuelleTrinh, Cong T., und R. Adam Thompson. „Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Reprograming Microbial Metabolic Pathways“. In Subcellular Biochemistry, 21–42. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5055-5_2.
Der volle Inhalt der QuelleSlenter, Denise N., Martina Kutmon und Egon L. Willighagen. „WikiPathways: Integrating Pathway Knowledge with Clinical Data“. In Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases, 1457–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-67727-5_73.
Der volle Inhalt der QuelleRosselló, Francesc, und Gabriel Valiente. „Analysis of Metabolic Pathways by Graph Transformation“. In Lecture Notes in Computer Science, 70–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30203-2_7.
Der volle Inhalt der QuelleRohrschneider, Markus, Alexander Ullrich, Andreas Kerren, Peter F. Stadler und Gerik Scheuermann. „Visual Network Analysis of Dynamic Metabolic Pathways“. In Advances in Visual Computing, 316–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17289-2_31.
Der volle Inhalt der QuelleFell, David A., und Simon Thomas. „Increasing the flux in a metabolic pathway: a metabolic control analysis perspective“. In Regulation of Primary Metabolic Pathways in Plants, 257–73. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4818-4_13.
Der volle Inhalt der QuelleVan Cauter, Sofie, und Marco Essig. „Toxic and Metabolic Disorders“. In IDKD Springer Series, 129–36. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50675-8_9.
Der volle Inhalt der QuelleLoraine, Ann. „Co-expression Analysis of Metabolic Pathways in Plants“. In Plant Systems Biology, 247–64. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-563-7_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Metabolic pathways analysis"
Meitalovs, Jurijs, und Egils Stalidzans. „Analysis of synthetic metabolic pathways solution space“. In 2013 IEEE International Conference on System Science and Engineering (ICSSE). IEEE, 2013. http://dx.doi.org/10.1109/icsse.2013.6614656.
Der volle Inhalt der QuelleJourdan, Fabien, und Guy Melancon. „Tool for metabolic and regulatory pathways visual analysis“. In Electronic Imaging 2003, herausgegeben von Robert F. Erbacher, Philip C. Chen, Jonathan C. Roberts, Matti T. Groehn und Katy Boerner. SPIE, 2003. http://dx.doi.org/10.1117/12.477524.
Der volle Inhalt der QuelleNoriega, Fernando G. „Metabolic analysis of the juvenile hormone synthesis pathways in mosquitoes“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.91917.
Der volle Inhalt der QuelleCakmak, Ali, Mustafa Kirac, Marc R. Reynolds, Zehra M. Ozsoyoglu und Gultekin Ozsoyoglu. „Gene Ontology-Based Annotation Analysis and Categorization of Metabolic Pathways“. In 19th International Conference on Scientific and Statistical Database Management (SSDBM 2007). IEEE, 2007. http://dx.doi.org/10.1109/ssdbm.2007.35.
Der volle Inhalt der Quelle„METABOLIC MODELING OF CONVERGING METABOLIC PATHWAYS - Analysis of Non-steady State Stable Isotope-resolve Metabolism of UDP-GlcNAc and UDP-GalNAc“. In International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003129401080115.
Der volle Inhalt der QuelleManiadi, Evaggelia M., und Ioannis G. Tollis. „Analysis and visualization of metabolic pathways and networks: A hypegraph approach“. In 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 2014. http://dx.doi.org/10.1109/bhi.2014.6864316.
Der volle Inhalt der Quelle„STABILITY ANALYSIS FOR BACTERIAL LINEAR METABOLIC PATHWAYS WITH MONOTONE CONTROL SYSTEM THEORY“. In 7th International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002944900220029.
Der volle Inhalt der QuellePedersen, Jay, Ryan Patch, Lotfollah Najjar und Dhundy R. Bastola. „PathwayLinks: Network analysis of metabolic pathways across bacterial organisms in a community“. In 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2014. http://dx.doi.org/10.1109/bibm.2014.6999276.
Der volle Inhalt der QuelleVetchinkina, E. P., V. Yu Gorshkov, N. E. Gogoleva, Yu V. Gogolev und V. E. Nikitina. „Comparative analysis of transcriptomes of different morphological structures of the basidiomycete Lentinus edodes“. In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.270.
Der volle Inhalt der QuelleArrigo, Patrizio, Pasquale P. Cardo und Carmelina Ruggiero. „Integrated Bioinformatics analysis of structural differences in metabolic pathways. An application to Mycobacterium Leprae“. In 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2007. http://dx.doi.org/10.1109/nems.2007.352176.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Metabolic pathways analysis"
Aharoni, Asaph, Zhangjun Fei, Efraim Lewinsohn, Arthur Schaffer und Yaakov Tadmor. System Approach to Understanding the Metabolic Diversity in Melon. United States Department of Agriculture, Juli 2013. http://dx.doi.org/10.32747/2013.7593400.bard.
Der volle Inhalt der QuelleSharon, Amir, und Maor Bar-Peled. Identification of new glycan metabolic pathways in the fungal pathogen Botrytis cinerea and their role in fungus-plant interactions. United States Department of Agriculture, 2012. http://dx.doi.org/10.32747/2012.7597916.bard.
Der volle Inhalt der QuelleFait, Aaron, Grant Cramer und Avichai Perl. Towards improved grape nutrition and defense: The regulation of stilbene metabolism under drought. United States Department of Agriculture, Mai 2014. http://dx.doi.org/10.32747/2014.7594398.bard.
Der volle Inhalt der QuelleDroby, S., J. L. Norelli, M. E. Wisniewski, S. Freilich, A. Faigenboim und C. Dardick. Microbial networks on harvested apples and the design of antagonistic consortia to control postharvest pathogens. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134164.bard.
Der volle Inhalt der QuellePell, Eva J., Sarah M. Assmann, Amnon Schwartz und Hava Steinberger. Ozone Altered Stomatal/Guard Cell Function: Whole Plant and Single Cell Analysis. United States Department of Agriculture, Dezember 2000. http://dx.doi.org/10.32747/2000.7573082.bard.
Der volle Inhalt der QuelleOr, Etti, David Galbraith und Anne Fennell. Exploring mechanisms involved in grape bud dormancy: Large-scale analysis of expression reprogramming following controlled dormancy induction and dormancy release. United States Department of Agriculture, Dezember 2002. http://dx.doi.org/10.32747/2002.7587232.bard.
Der volle Inhalt der QuelleBlumwald, Eduardo, und Avi Sadka. Citric acid metabolism and mobilization in citrus fruit. United States Department of Agriculture, Oktober 2007. http://dx.doi.org/10.32747/2007.7587732.bard.
Der volle Inhalt der QuelleZhou, Min, Qinghua Wang, Xinyi Lu, Ping Zhang, Rui Yang, Yu Chen, Jiazeng Xia und Daozhen Chen. Exhaled breath and urinary volatile organic compounds (VOCs) for cancer diagnoses, and microbial-related VOC metabolic pathway analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2023. http://dx.doi.org/10.37766/inplasy2023.8.0061.
Der volle Inhalt der Quelleyu, luyou, jinping yang, xi meng und yanhua lin. Effectiveness of the gut microbiota-bile acid pathway (BAS) in the treatment of Type 2 diabetes: A protocol for systematic review and meta analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Juli 2022. http://dx.doi.org/10.37766/inplasy2022.7.0117.
Der volle Inhalt der QuelleGalili, Gad, Harry J. Klee und Asaph Aharoni. Elucidating the impact of enhanced conversion of primary to secondary metabolism on phenylpropanoids secondary metabolites associated with flavor, aroma and health in tomato fruits. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7597920.bard.
Der volle Inhalt der Quelle