Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mesure Géométrique de l'intrication“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mesure Géométrique de l'intrication" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mesure Géométrique de l'intrication"
Mărgineanu-Cârstoiu, Monica. „Le trésor de Siphnos à Delphes, une géometrie en pierre? Corollaire metrologiques.“ CaieteARA. Arhitectură. Restaurare. Arheologie, Nr. 12 (2021): 21–44. http://dx.doi.org/10.47950/caieteara.2021.12.02.
Der volle Inhalt der QuelleMarcus, M. B. „SURFACES ALÉATOIRES: Mesure Géométrique des Ensembles de Niveau (Lecture Notes in Mathematics 1147)“. Bulletin of the London Mathematical Society 19, Nr. 1 (Januar 1987): 105–7. http://dx.doi.org/10.1112/blms/19.1.105.
Der volle Inhalt der QuelleHosseingholian, Mohsen, Daniel Levacher und Matoren Khay. „Mesure en continu de la raideur dynamique d’une voie ferrée“. Canadian Geotechnical Journal 48, Nr. 3 (März 2011): 439–50. http://dx.doi.org/10.1139/t11-003.
Der volle Inhalt der QuelleMarie-Jeanne, Perrin-Glorian. „Enseigner la géométrie plane en cohérence de 6 à 15 ans“. REMATEC 19, Nr. 48 (09.02.2024): e2024001. http://dx.doi.org/10.37084/rematec.1980-3141.2024.n48.e2024001.id588.
Der volle Inhalt der QuelleMacdonald, Roderick A., und Jonathan Widell. „Office Politics (Again)!“ Canadian journal of law and society 20, Nr. 2 (August 2005): 1–26. http://dx.doi.org/10.1353/jls.2006.0024.
Der volle Inhalt der QuellePiracci, Antonio. „Evaluation instrumentale de la couleur“. OENO One 28, Nr. 3 (30.09.1994): 247. http://dx.doi.org/10.20870/oeno-one.1994.28.3.1145.
Der volle Inhalt der QuellePINOLI, Jean-Charles. „Théorie de la mesure géométrique“. Mathématiques, April 2016. http://dx.doi.org/10.51257/a-v1-af213.
Der volle Inhalt der QuelleHarinck, Pascale, Alain Plagne und Claude Sabbah. „Une invitation à la théorie géométrique de la mesure. Préface des éditeurs“. Journées mathématiques X-UPS, 01.08.2024, v—vi. http://dx.doi.org/10.5802/xups.2017-00.
Der volle Inhalt der QuelleDissertationen zum Thema "Mesure Géométrique de l'intrication"
Amouzou, Grâce Dorcas Akpéné. „Etude de l’intrication par les polynômes de Mermin : application aux algorithmes quantiques“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK063.
Der volle Inhalt der QuelleThis thesis explores the measurement of entanglement in certain hypergraph states, in certain quantum algorithms like the Quantum Phase estimation and Counting algorithms as well as in reactive agent circuits, using the geometric measurement of entanglement, tools from Mermin polynomials and coefficient matrices. Entanglement is a concept present in quantum physics that has no known equivalent to date in classical physics.The core of our research is based on the implementation of entanglement detection and measurement devices in order to study quantum states from the point of view of entanglement.With this in mind, calculations are first carried out numerically and then on a quantum simulator and computer. Indeed, three of the tools used can be implemented on a quantum machine, which allows us to compare theoretical and "real" results
Albouy, Olivier. „Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l'information quantique“. Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00402290.
Der volle Inhalt der QuellePuis nous étudions de façon systématique la possibilité de construire de telles bases au moyen des opérateurs de Pauli. 1) L'étude de la droite projective sur (Z_d)^m montre que, pour obtenir des ensembles maximaux de bases décorrélées à l'aide d'opérateurs de Pauli, il est nécessaire de considérer des produits tensoriels de ces opérateurs. 2) Les sous-modules lagrangiens de (Z_d)^2n, dont nous donnons une classification complète, rendent compte des ensembles maximalement commutant d'opérateurs de Pauli. Cette classification permet de savoir lesquels de ces ensembles sont susceptibles de donner des bases décorrélées : ils correspondent aux demi-modules lagrangiens, qui s'interprètent encore comme les points isotropes de la droite projective (P(Mat(n, Z_d)^2),ω). Nous explicitons alors un isomorphisme entre les bases décorrélées ainsi obtenues et les demi-modules lagrangiens distants, ce qui précise aussi la correspondance entre sommes de Gauss et bases décorrélées. 3) Des corollaires sur le groupe de Clifford et l'espace des phases discret sont alors développés.
Enfin, nous présentons quelques outils inspirés de l'étude précédente. Nous traitons ainsi du rapport anharmonique sur la sphère de Bloch, de géométrie projective en dimension supérieure, des opérateurs de Pauli continus et nous comparons l'entropie de von Neumann à une mesure de l'intrication par calcul d'un déterminant.
Jaffali, Hamza. „Étude de l'Intrication dans les Algorithmes Quantiques : Approche Géométrique et Outils Dérivés“. Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA017.
Der volle Inhalt der QuelleQuantum entanglement is one of the most interesting phenomenon in Quantum Mechanics, and especially in Quantum Information. It is a fundamental resource in Quantum Computing, and its role in the efficiency and accuracy of quantum algorithms or protocols is not yet fully understood. In this thesis, we study quantum entanglement of multipartite states, and more precisely the nature of entanglement involved in quantum algorithms. This study is theoretical, and uses tools mainly coming from algebraic geometry.We focus on Grover’s and Shor’s algorithms, and determine what entanglement classes are reached (or not) by these algorithms, and this is the qualitative part of our study. Moreover, we quantitatively measure entanglement, using geometric and algebraic measures, and study its evolution through the several steps of these algorithms. We also propose original geometrical interpretations of the numerical results.On another hand, we also develop and exploit new tools for measuring, characterizing and classifying quantum entanglement. First, from a mathematical point of view, we study singularities of hypersurfaces associated to quantum states in order to characterize several entanglement classes. Secondly, we propose new candidates for maximally entangled states, especially for symmetric and fermionic systems, using polynomial invariants and geometric measure of entanglement. Finally, we use Machine Learning, more precisely the supervised approach using neural networks, to learn how to recognize algebraic varieties directly related with some entanglement classes
Lacroix, Cyril. „Caractérisation géométrique des assemblages flexibles par la mesure“. Thesis, Cachan, Ecole normale supérieure, 2015. http://www.theses.fr/2015DENS0031/document.
Der volle Inhalt der QuelleThe emergence of composite materials in aeronautics leads to lighter structures. However, these new materials induce new constraints to the assembly process. The adaptation is not yet complete. Indeed many operations are necessary to respect the new requirements, but are considered as non-productive. In the context of the European project LOCOMACHS, an assembly simulation tool is developed to limit the use of these operations. This thesis relates to the validation, from the measure, of the models used for flexible assembly simulation. A method to evaluate the geometry of a flexible component is implemented. The method compensates, by simulation, the effects of the environment on the component during its measurement. A sensitivity analysis of the method against changes in various measurement parameters and simulation parameters is performed in order to define a framework for implementation. Parameters of the model used to perform the compensation by simulation are not representative of the actual behavior. A modal analysis of deviations to a chosen reference geometry contributes to the adjustment of these parameters. This reference geometry is obtained by a reversal method applied in a flexible context to cancel some of the effects of the environment on the measured geometry of the component. The gap between the assembled components is the geometric key characteristic in an assembly of aeronautical composite structure. The assembly simulation, from measuring data of flexible components, enables to evaluate the gap between the components prior to assembly. Gap measurement methods in an assembly of flexible components are proposed, and they have been experimentally performed. The comparison of measured and simulated gaps highlights the performance of the simulation tool, and the difficulties in modeling actual measurement environment and actual assembly environment
Bourdet, Pierre. „Contribution à la mesure tridimensionnelle : modèle d'identification géométrique des surfaces, métrologie fonctionnelle des pièces mécaniques, correction géométrique des machines à mesurer tridimentionnelles“. Nancy 1, 1987. http://www.theses.fr/1987NAN10041.
Der volle Inhalt der QuelleContri, Alexandre. „Qualité géométrique de la mesure de surfaces complexes par moyens optiques“. Cachan, Ecole normale supérieure, 2002. http://www.theses.fr/2002DENS0025.
Der volle Inhalt der QuelleGrelard, Florent. „Caractérisation géométrique d’organes tubulaires“. Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0815/document.
Der volle Inhalt der QuelleThis thesis is dedicated to the study of tubular organs, such as blood vessels, bronchii, or neurons. Several diseases, such as chronic obstructive pulmonary disease (COPD) for bronchii, distort the structure of tubular organs. Several tools are necessary in order to make precise and reproducible measurements and to track the organ over time. The main goal of this thesis is to define new tools for the automatic characterization of tubular organs. This characterization is based on the geometrical analysis from a segmentation. There are various state-of-the-art methods to perform geometrical measurements, but some of them require to extract alternative representations from the organ. In this thesis, we focus on two of these : curvilinear skeletons and 2D planes computed from the axis of the tube. Our first contribution is a method for the precise estimation of orthogonal planes. In addition, we propose a skeletonization algorithm as well as methods to improve existing skeletons. At the end of this manuscript, we introduce a method from a work in progress which allows to filter tubular structures in grayscale images
Albouy, Olivier. „Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory“. Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00612229.
Der volle Inhalt der QuelleJuillet, Nicolas. „Transport optimal et analyse géométrique dans les groupes de Heisenberg“. Grenoble 1, 2008. http://www.theses.fr/2008GRE10280.
Der volle Inhalt der QuelleIn this thesis we consider the Heisenberg group H_n=\R^{2n+1} with its Carnot-Carathéodory distance d_c and the Lebesgue measure\L^{2n+1}. In Chapter 1, in relation with the geometric traveling salesman problem in H_1, we construct a curve of finite length that does not satisfy the criterion of Ferrari, Franchi and Pajot about sets contained in the range of a rectifiable curve. We also prove a sharp Jacobian estimate of that maps that contract sets to a point going along geodesics. This is essentially equivalent to the Measure Contraction Property MCP(0,2n+3). With this estimate we answer positively a question by Ambrosio and Rigot about optimal transport in H_n (common work with Figalli). Indeed, in Chapter 2 we prove the absolute continuity of the measure of H_n on a Wasserstein geodesics starting from an absolutely continuous measure. In Chapter 3, we prove that the Curvature-Dimension CD(K,N) condition defined by optimal transport does not hold for any K\in\R and N\in[1,+\infty]. We also discuss other metric curvature properties in the case of H_n. Finally Chapter 4 is devoted to the concordance of the subelliptic "heat'' equation and the Wasserstein gradient flow of the Bolzmann entropy
Renaud, Pierre. „Apport de la vision pour l'identification géométrique de mécanismes parallèles“. Clermont-Ferrand 2, 2003. http://www.theses.fr/2003CLF21432.
Der volle Inhalt der QuelleBücher zum Thema "Mesure Géométrique de l'intrication"
Federer, Herbert. Geometric measure theory. Berlin: Springer, 1996.
Den vollen Inhalt der Quelle findenKree. Intégration et théorie de la mesure: Une approche géométrique. Ellipses Marketing, 1998.
Den vollen Inhalt der Quelle findenRectifiable sets, densities and tangent measures. Zurich, Switzerland: European Mathematical Society, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Mesure Géométrique de l'intrication"
„2. Applications lipschitziennes et théorie géométrique de la mesure“. In Analyse dans les espaces métriques, 107–224. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2257-7-004.
Der volle Inhalt der Quelle„2. Applications lipschitziennes et théorie géométrique de la mesure“. In Analyse dans les espaces métriques, 107–224. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2257-7.c004.
Der volle Inhalt der Quelle