Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Messenger RNA couple“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Messenger RNA couple" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Messenger RNA couple"
Al Fayez, Nojoud, Majed S. Nassar, Abdullah A. Alshehri, Meshal K. Alnefaie, Fahad A. Almughem, Bayan Y. Alshehri, Abdullah O. Alawad und Essam A. Tawfik. „Recent Advancement in mRNA Vaccine Development and Applications“. Pharmaceutics 15, Nr. 7 (18.07.2023): 1972. http://dx.doi.org/10.3390/pharmaceutics15071972.
Der volle Inhalt der QuelleOohayyed, N. A., M. M. Mohammed, A. M. Al-Rahim, R. N. Al Chalabi, S. A. Shaban und A. A. J. Suleiman. „Identification of key miRNAs as regulatory biomarkers of gonadotropins leading to infertility in males“. Obstetrics, Gynecology and Reproduction 17, Nr. 5 (12.11.2023): 607–24. http://dx.doi.org/10.17749/2313-7347/ob.gyn.rep.2023.398.
Der volle Inhalt der QuelleGong, Congcong, Yang Hu, Mao Zhou, Maojin Yao, Zhengxiang Ning, Zhi Wang und Jiaoyan Ren. „Identification of specific modules and hub genes associated with the progression of gastric cancer“. Carcinogenesis 40, Nr. 10 (26.02.2019): 1269–77. http://dx.doi.org/10.1093/carcin/bgz040.
Der volle Inhalt der QuelleWeber, Ramona, Min-Yi Chung, Csilla Keskeny, Ulrike Zinnall, Markus Landthaler, Eugene Valkov, Elisa Izaurralde und Cátia Igreja. „4EHP and GIGYF1/2 Mediate Translation-Coupled Messenger RNA Decay“. Cell Reports 33, Nr. 2 (Oktober 2020): 108262. http://dx.doi.org/10.1016/j.celrep.2020.108262.
Der volle Inhalt der QuelleHanjin, Cui, Liu Tao, Li Pengfei, Yang Ali, Zhou Huajun, Luo Jiekun, Wang Yang und Tang Tao. „Altered Long Noncoding RNA and Messenger RNA Expression in Experimental Intracerebral Hemorrhage - a Preliminary Study“. Cellular Physiology and Biochemistry 45, Nr. 3 (2018): 1284–301. http://dx.doi.org/10.1159/000487464.
Der volle Inhalt der QuelleEstevez, Mariana, Rui Li, Biplab Paul, Kaveh Daneshvar, Alan C. Mullen, Fabio Romerio und Balasubrahmanyam Addepalli. „Identification and mapping of post-transcriptional modifications on the HIV-1 antisense transcript Ast in human cells“. RNA 28, Nr. 5 (15.02.2022): 697–710. http://dx.doi.org/10.1261/rna.079043.121.
Der volle Inhalt der QuelleYang, Jing, Ying Cao und Ligeng Ma. „Co-Transcriptional RNA Processing in Plants: Exploring from the Perspective of Polyadenylation“. International Journal of Molecular Sciences 22, Nr. 7 (24.03.2021): 3300. http://dx.doi.org/10.3390/ijms22073300.
Der volle Inhalt der QuelleLiu, Yaojuan, Yesenia Rodriguez, Robert L. Ross, Ruoxia Zhao, Jason A. Watts, Christopher Grunseich, Alan Bruzel et al. „RNA abasic sites in yeast and human cells“. Proceedings of the National Academy of Sciences 117, Nr. 34 (11.08.2020): 20689–95. http://dx.doi.org/10.1073/pnas.2011511117.
Der volle Inhalt der QuelleGrüschow, Sabine, Catherine S. Adamson und Malcolm F. White. „Specificity and sensitivity of an RNA targeting type III CRISPR complex coupled with a NucC endonuclease effector“. Nucleic Acids Research 49, Nr. 22 (06.12.2021): 13122–34. http://dx.doi.org/10.1093/nar/gkab1190.
Der volle Inhalt der QuelleStephan, W., und D. A. Kirby. „RNA folding in Drosophila shows a distance effect for compensatory fitness interactions.“ Genetics 135, Nr. 1 (01.09.1993): 97–103. http://dx.doi.org/10.1093/genetics/135.1.97.
Der volle Inhalt der QuelleDissertationen zum Thema "Messenger RNA couple"
Levacher, Corentin. „Le déséquilibre ARΝ messager/ARΝ circulaire : nοuveau biοmarqueur en génétique sοmatique et nοuveau facteur de prédispοsitiοn en génétique cοnstitutiοnnelle?“ Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR045.
Der volle Inhalt der QuelleCircular RNAs (circRNAs), produced by backsplicing, are an emerging new class of RNAs implicated in various diseases, including cancer. Through their multiple functions, circRNAs can modulate the levels of messenger RNAs (mRNAs), finely regulated linear transcripts. Given that a physiologically balance exists between these two types of transcripts, we hypothesize that a disruption in the levels of this circRNA-mRNA couple plays a role in tumorigenesis. To test this hypothesis, we developed SEALigHTS (Splice and Expression Analyses by exon Ligation and High Throughput Sequencing), an innovative technique for the simultaneous analysis of circRNAs and mRNAs. SEALigHTS is based on the design of probes at exon ends, enabling exploration of all exon-exon junctions. Briefly, after reverse transcription and hybridization of probes to complementary DNA, neighboring probes are ligated, and the number of ligations quantified using unique molecular identifiers and sequencing. As a first step, we analyzed tumor and adjacent normal breast tissue samples. Analysis of the splicing and backsplicing of BRCA1 and BRCA2 genes, involved in Hereditary Breast and Ovarian Cancer syndrome (HBOC), revealed a significant decrease in the circRNA/mRNA ratio in tumor tissue compared to normal tissue (p = 1.6e-09 for BRCA1 and p = 4.4e-05 for BRCA2). In a second step, we studied the splicing and backsplicing of 23 colorectal cancer (CRC) predisposition genes in blood samples from 712 CRC-predisposed patients and 249 controls. The circRNA/mRNA ratio was found to be 1.93 times higher in patients than in controls (p < 2e-16). In a third step, we assessed the diagnostic potential of SEALigHTS by studying 44 CRC and HBOC genes. After validating the detection of splicing events for characterized variations, the analysis of prospective patients with SEALigHTS improved the diagnostic yield. This study has enriched our knowledge of the levels of the various linear and circular isoforms of the predisposition genes studied. Beyond their potential as biomarkers in breast cancer or CRC, the disruption of the circRNA/mRNA ratio raises questions about the involvement of circRNAs in somatic and constitutional genetics
Liska, Olga. „Effect of CTCF and Cohesin on the dynamics of RNA polymerase II transcription and coupled pre-messenger RNA processing“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:ba9454b8-4498-42c8-bc4c-16dd971af164.
Der volle Inhalt der Quelle„Characterization of an orphan G protein-coupled receptor mas-induced tumor formation“. Thesis, 2005. http://library.cuhk.edu.hk/record=b6074087.
Der volle Inhalt der QuelleIn order to identify the cellular mechanism of mas-induced tumor formation, a full-length mas cDNA was cloned into a mammalian expression vector pFRSV with dihydrofolate reductase gene as a selection marker. Detailed analyses of mas-transfected cell lines by Southern blot, Northern blot and tumorigenicity assay indicated that tumorigenicity of mas-transfected cells depended on the sites of chromosomal integration and the levels of mas expression. These results suggest that overexpression of mas is not sufficient to induce tumor formation. In line with the ability of mas-transfected cells Mc0M80 to form solid tumor in nude mice, MTT cell proliferation assay indicated that the mas-transfected cells Mc0M80 proliferated faster than vector-transfected cells. Moreover, mas-transfected cells Mc0M80 exhibited significantly increased anchorage-independent growth. Furthermore, mas-transfected cells Mc0M80 showed higher percentage cells in G2/M phase but lower in S-phase in comparison with vector-transfected cells.
Interestingly, Southern blot analysis of individual xenografted tumor tissue indicated that tumor was composed of cells not only derived from injected mas-transfected CHO cells but also cells from mouse tissues. The presence of mouse stromal cells in the tumor was confirmed by immunohistochemistry and in situ hybridization. Previously our laboratory had identified some up- and down-regulated genes in mas-transfected cells by fluorescent differential display (FluoroDD). Northern blot showed that these differential expressed genes were up- or down-regulated in mas-transfected cells and tumor samples, which might play an important role in cancerous growth.
Taken together, these results suggest that over-expression of GPCR mas up-regulated tumor-related genes, resulting in promoting excessive cell growth and tumorigenic transformation. In addition, when the tumor mass formed they secreted some growth factor(s) which altered the migration of mouse stromal cells into tumor mass. The interactions of transformed cells and stromal cells further aggravate the tumorigenicity process.
To complement our fluorescent differential display study and to compare changes of gene expression when transformed cells were exposed to the microenvironment in nude mice, protein expression profiles of mas over-expressing cells as well as tumor tissues were analyzed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry. The 2D-PAGE analysis showed that a similar but distinct protein expression profiles in mas-transfected cells and in mas-induced tumor. Mass spectrometry analysis identified several cancerous growth-related proteins and they are involved in processes such as cell signaling, energy metabolism, transcription and translation and cytoskeleton organization.
Lin Wenzhen.
"December 2005."
Adviser: Cheung Wing Tai.
Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6381.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (p. 222-240).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
Buchteile zum Thema "Messenger RNA couple"
Theodorakis, Nicholas G., und Don W. Cleveland. „Translationally Coupled Degradation of Tubulin mRNA“. In Control of Messenger RNA Stability, 219–38. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-08-091652-1.50014-1.
Der volle Inhalt der QuelleMajeed Shah, Ishteyaq, Mashooq Ahmad Dar, Kaiser Ahmad Bhat, Tashook Ahmad Dar, Fayaz Ahmad und Syed Mudasir Ahmad. „Long Non-Coding RNAs: Biogenesis, Mechanism of Action and Role in Different Biological and Pathological Processes“. In Recent Advances in Non-Coding RNAs [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104861.
Der volle Inhalt der QuelleSalunga, Ranelle c., und Hongqing Guo. „Gene expression analysis via cDNA microarrays of laser capture microdissected cells from fixed tissue“. In DNA Microarrays, 121–38. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780199637775.003.0007.
Der volle Inhalt der QuelleTsareva, Jan Van Duin Nina. „Single-Stranded RNA Phages“. In The Bacteriophages, 175–96. Oxford University PressNew York, NY, 2005. http://dx.doi.org/10.1093/oso/9780195168778.003.0015.
Der volle Inhalt der QuelleDuin, Jan Van, und Nina Tsareva. „Single-Stranded RNA Phages“. In The Bacteriophages, 175–96. Oxford University PressNew York, NY, 2005. http://dx.doi.org/10.1093/oso/9780195148503.003.0015.
Der volle Inhalt der QuelleFusco, Dahlene, Edouard Bertrand und Robert H. Singer. „Messenger RNA Imaging in Living Cells for Biomedical Research“. In Biomedical Optical Imaging, 102–19. Oxford University PressNew York, NY, 2009. http://dx.doi.org/10.1093/oso/9780195150445.003.0004.
Der volle Inhalt der QuelleChen, R., und D. Fink. „Computing the Structure of Large Complexes: Modeling the 16S Ribosoma RNA“. In Biological NMR Spectroscopy. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195094688.003.0025.
Der volle Inhalt der QuelleGerfen, Charles R., W. Scott Young und Piers Emson. „In situ hybridization histochemistry with oligonucleotides for localization of messenger RNA in neurones“. In Experimental Neuroanatomy, 173–86. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199633265.003.0008.
Der volle Inhalt der QuelleSemenza, Gregg L. „Gene Expression and Transcriptional Regulation“. In Transcription Factors and Huinan Disease, 3–25. Oxford University PressNew York, NY, 1998. http://dx.doi.org/10.1093/oso/9780195112399.003.0001.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Messenger RNA couple"
Verdugo, Anael, und Richard H. Rand. „Delay Differential Equations in the Dynamics of Gene Copying“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34214.
Der volle Inhalt der QuelleWu, Q. Y., B. R. Bahnak, L. Coulombel, J. P. Caen, G. Pietu und D. Meyer. „VON WILLEBRAND FACTOR mRNA IS SEVERELY REDUCED IN PIGS WITH HOMOZYGOUS VON WILLEBRAND DISEASE“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644113.
Der volle Inhalt der QuelleWeitz, C., Y. Miyake, K. Shinzato, E. Montag und J. Nathans. „Studies on the molecular genetics of tritanopia“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.fm3.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Messenger RNA couple"
Levin, Ilan, John W. Scott, Moshe Lapidot und Moshe Reuveni. Fine mapping, functional analysis and pyramiding of genes controlling begomovirus resistance in tomato. United States Department of Agriculture, November 2014. http://dx.doi.org/10.32747/2014.7594406.bard.
Der volle Inhalt der Quelle