Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mesoscopic mechanics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mesoscopic mechanics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mesoscopic mechanics"
Sowa, Artur. „Mesoscopic mechanics“. Journal of Physics and Chemistry of Solids 65, Nr. 8-9 (August 2004): 1507–15. http://dx.doi.org/10.1016/j.jpcs.2003.12.012.
Der volle Inhalt der QuelleSheng, Yanping, Haichuan Jia, Hongli Lv, Huaxin Chen, Xiaorui Zhao, Runzhi Wang und Jiandang Meng. „Study on Mesoscopic Mechanics of Recycled Asphalt Mixture in the Indirect Tensile Test“. Mathematical Problems in Engineering 2020 (17.12.2020): 1–12. http://dx.doi.org/10.1155/2020/6621275.
Der volle Inhalt der QuelleLian, Ye Da, Ren Qiang Wu, Bing Zhang und Tao Feng. „Application of GTN Model in Tensile Fracture of Pipeline Steel“. Key Engineering Materials 777 (August 2018): 451–56. http://dx.doi.org/10.4028/www.scientific.net/kem.777.451.
Der volle Inhalt der QuelleXie, Guang Qi, und Huan You Wang. „Coarse-graining Mean and Displacement of Granular Matter“. Materials Science Forum 1054 (24.02.2022): 63–67. http://dx.doi.org/10.4028/p-a652a3.
Der volle Inhalt der QuelleSun, Ze Ming, Qi Fang Zhu, Zhi Gang Fan, Wen Xia, Shu Feng Liu und Yurii Sharkeev. „A Mesoscopic Mechanics Research on Deformation of 7B04 High Strength Aluminum Alloy“. Key Engineering Materials 723 (Dezember 2016): 15–20. http://dx.doi.org/10.4028/www.scientific.net/kem.723.15.
Der volle Inhalt der QuelleDomínguez, D., A. R. Bishop und N. Grønbech-Jensen. „Coherence and Complexity in Condensed Matter: Josephson Junction Arrays“. International Journal of Bifurcation and Chaos 07, Nr. 05 (Mai 1997): 979–88. http://dx.doi.org/10.1142/s0218127497000790.
Der volle Inhalt der QuelleCroquette, M., S. Deléglise, T. Kawasaki, K. Komori, M. Kuribayashi, A. Lartaux-Vollard, N. Matsumoto et al. „Recent advances toward mesoscopic quantum optomechanics“. AVS Quantum Science 5, Nr. 1 (März 2023): 014403. http://dx.doi.org/10.1116/5.0128487.
Der volle Inhalt der QuelleLi, Guodong, und Zonglin Wang. „A Mesoscopic Simulation for the Early-Age Shrinkage Cracking Process of High Performance Concrete in Bridge Engineering“. Advances in Materials Science and Engineering 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/9504945.
Der volle Inhalt der QuelleFalasco, G., F. Baldovin, K. Kroy und M. Baiesi. „Mesoscopic virial equation for nonequilibrium statistical mechanics“. New Journal of Physics 18, Nr. 9 (22.09.2016): 093043. http://dx.doi.org/10.1088/1367-2630/18/9/093043.
Der volle Inhalt der QuelleLykov, Kirill, Yasaman Nematbakhsh, Menglin Shang, Chwee Teck Lim und Igor V. Pivkin. „Probing eukaryotic cell mechanics via mesoscopic simulations“. PLOS Computational Biology 13, Nr. 9 (18.09.2017): e1005726. http://dx.doi.org/10.1371/journal.pcbi.1005726.
Der volle Inhalt der QuelleDissertationen zum Thema "Mesoscopic mechanics"
Yamamoto, Akihisa. „Mesoscopic structural dynamics and mechanics of cell membrane models“. 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/198928.
Der volle Inhalt der QuelleZhang, Xiaohan. „Field Dislocation Mechanics with Applications in Atomic, Mesoscopic and Tectonic Scale Problems“. Research Showcase @ CMU, 2015. http://repository.cmu.edu/dissertations/649.
Der volle Inhalt der QuellePicallo, González Clara Beatriz. „A Mesoscopic Study of Plasticity and Fracture in Disordered Materials“. Doctoral thesis, Universidad de Cantabria, 2010. http://hdl.handle.net/10803/10648.
Der volle Inhalt der QuelleCodony, David. „Mathematical and computational modeling of flexoelectricity at mesoscopic and atomistic scales“. Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671925.
Der volle Inhalt der QuelleAquesta tesi doctoral es centra en el desenvolupament de models matemàtics i computacionals per a la flexoelectricitat, un acoblament electromecànic relativament nou que es present en qualsevol material dielèctric a les escales microscòpica i nanoscòpica. El treball s'emmarca tant en el context de la mecànica del medi continu com de la mecànica quàntica, i explora l'espai entre aquestes dues disciplines. Per una banda, s'estudien els models matemàtics de l¿'efecte flexoelèctric mitjançant la mecànica del medi continu, i es desenvolupen tècniques computacionals necessàries per la resolució numèrica dels problemes de valor de contorn associats. La nova infraestructura computacional desenvolupada en aquest treball és capaç de predir el rendiment de dispositius funcionals per a la transducció electromecànica a la nanoescala, on la flexoelectricitat és sempre present, sense cap tipus de limitació en quant a geometria, propietats materials, condicions de contorn o no-linearitat. Els exemples numèrics en aquest document demostren que la flexoelectritat es pot aprofitar de diverses maneres per tal de desenvolupar aplicacions nanotecnològiques innovadores. Per altra banda, el efecte flexoelèctric es estudiat també a nivell atomístic mitjançant la mecànica quàntica. Aquest treball proposa una metodologia nova per quantificar les propietats flexoelèctriques de materials dielèctrics, connectant les simulacions atomístiques amb els models continus proposats. El mètode desenvolupat clarifica un tema controvertit en la comunitat de la teoria del funcional de la densitat (DFT), on els càlculs teòrics estan típicament en desacord entre ells. Les simulacions atomístiques no només serveixen per calcular els paràmetres flexoelèctrics dels materials considerats en models continus, sinó també per validar les hipòtesis en les quals es basen en relació amb les físiques rellevants a la nanoescala.
Conlon, Kelly Timothy. „The effect of mesoscopic spatial heterogeneity on the plastic deformation of Al-Cu alloys“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0004/NQ42838.pdf.
Der volle Inhalt der QuelleDonehoo, Brandon. „A superconducting investigation of nanoscale mechanics in niobium quantum point contacts“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24784.
Der volle Inhalt der QuelleCommittee Chair: Alexei Marchenkov; Committee Member: Bruno Frazier; Committee Member: Dragomir Davidovic; Committee Member: Markus Kindermann; Committee Member: Phillip First
Janvier, Camille. „Coherent manipulation of Andreev Bound States in an atomic contact“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS217/document.
Der volle Inhalt der QuelleLocalized electronic states, called Andreev bound states, appear in weak-links placed between superconducting electrodes. The experiments presented in this thesis explore the coherence properties of these states. Single atom contacts between aluminum electrodes are used as weak links. In order to isolate and probe these states, the atomic contacts are integrated in amicrowave cavity.In a first series of experiments, it is shown that Andreev states can be used to define a quantumbit, “the Andreev qubit”, which is controlled using microwave pulses.Measurements of the lifetime and coherence time of this qubit are thoroughly analyzed.In a second series of experiments, the interaction between the Andreev qubit and the microwave cavity are used to determine the number of photons present in the cavity as a function of the power of microwave pulses at its eigenfrequency.Finally, quantum and parity jumps are observed in continuous measurements of the state of the Andreev dot
Tranchida, Julien. „Multiscale description of dynamical processes in magnetic media : from atomistic models to mesoscopic stochastic processes“. Thesis, Tours, 2016. http://www.theses.fr/2016TOUR4027/document.
Der volle Inhalt der QuelleDetailed magnetic properties of solids can be regarded as the result of the interaction between three subsystems: the effective spins, that will be our focus in this thesis, the electrons and the crystalline lattice. These three subsystems exchange energy, in many ways, in particular, through relaxation processes. The nature of these processes remains extremely hard to understand, and even harder to simulate. A practical approach, for performing such simulations, involves adapting the description of random processes by Langevin to the collective dynamics of the spins, usually called the magnetization dynamics. It consists in describing the, complicated, interactions between the subsystems, by the effective interactions of the subsystem of interest, the spins, and a thermal bath, whose probability density is only of relevance. This approach allows us to interpret the results of atomistic spin dynamics simulations in appropriate macroscopic terms. After presenting the numerical implementation of this methodology, a typical study of a magnetic device based on superparamagnetic iron monolayers is presented, as an example. The results are compared to experimental data and allow us to validate the atomistic spin dynamics simulations
Zhou, Rongxin. „Mesoscopic analysis of damage mechanisms in concrete material“. Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/23650.
Der volle Inhalt der QuelleIdjimarene, Sonia. „Power laws behavior and nonlinearity mechanisms in mesoscopic elastic materials“. Phd thesis, Université du Maine, 2013. http://tel.archives-ouvertes.fr/tel-01037944.
Der volle Inhalt der QuelleBücher zum Thema "Mesoscopic mechanics"
1940-, Kitagawa Hiroshi, Aihara T. 1964- und Kawazoe Y. 1947-, Hrsg. Mesoscopic dynamics of fracture: Computational materials design. Berlin: New York, 1998.
Den vollen Inhalt der Quelle findenIUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength (2003 Osaka, Japan). IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength: Proceedings of the IUTAM symposium held in Osaka, Japan, 6-11 July, 2003. New York: Kluwer Academic Publishers, 2004.
Den vollen Inhalt der Quelle findenIUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength (2003 Osaka, Japan). IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength: Proceedings of the IUTAM symposium held in Osaka, Japan, 6-11 July, 2003 : volume in celebration of Professor Kitagawa's retirement. Dordrecht: Kluwer Academic Publishers, 2004.
Den vollen Inhalt der Quelle findenInternational Symposium Foundations of Quantum Mechanics in the Light of New Technology (5th 1995 Hatoyama-machi, Japan). Quantum coherence and decoherence: Foundations of quantum mechanics in the light of new technology : proceedings of the 5th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology (ISQM-Tokyo '95) Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama, Japan, August 21-24, 1995. Amsterdam: Elsevier/North Holland, 1996.
Den vollen Inhalt der Quelle findenDrexel Symposium on Quantum Nonintegrability (4th 1994 Philadelphia, Pa.). Quantum classical correspondence: Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, Drexel University, Philadelphia, USA, September 8-11, 1994. Cambridge, MA: International Press, 1997.
Den vollen Inhalt der Quelle findenInternational, Symposium on Foundations of Quantum Mechanicsin the Light of New Technology (5th 1995 Hatoyama Japan). Quantum coherence and decoherence: Foundations of quantum mechanics in the light of new technology : proceedings of the 5th International Symposium on Foundations of QuantumMechanics in the Light of New Technology (ISQM-Tokyo '95), Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama, Japan, August 21-24, 1995. New York: Elsevier, 1996.
Den vollen Inhalt der Quelle findenKitagawa, Hiroshi, Yoshiyuki Kawazoe und Tomoyasu Aihara Jr. Mesoscopic Dynamics of Fracture: Computational Materials Design. Springer, 2010.
Den vollen Inhalt der Quelle findenAihara, Tomoyasu Jr, Hiroshi Kitagawa und Yoshiyuki Kawazoe. Mesoscopic Dynamics of Fracture: Computational Materials Design. Springer London, Limited, 2013.
Den vollen Inhalt der Quelle findenGuyer, Robert A., und Paul A. Johnson. Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete. Wiley & Sons, Incorporated, John, 2009.
Den vollen Inhalt der Quelle findenReguera, D., L. L. Bonilla, G. Platero und J. M. Rubi. Statistical and Dynamical Aspects of Mesoscopic Systems: Proceedings of the XVI Sitges Conference on Statistical Mechanics Held at Sitges, Barcelona, Spain, 7-11 June 1999. Springer London, Limited, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Mesoscopic mechanics"
Hu, G. W., und X. S. Hu. „Outline of Mesoscopic Fluid Mechanics“. In New Trends in Fluid Mechanics Research, 688. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75995-9_229.
Der volle Inhalt der QuelleSucci, Sauro. „Mesoscopic particle models of fluid flows“. In Stochastic Methods in Fluid Mechanics, 137–65. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1622-7_4.
Der volle Inhalt der QuelleMuschik, Wolfgang, und Christina Papenfuss. „Cosserat Continua Described by Mesoscopic Theory“. In Advances in Mechanics and Mathematics, 307–14. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5695-8_32.
Der volle Inhalt der QuelleToi, Yutaka, und Takanori Kiyosue. „Three-Dimensional Mesoscopic Simulation of Brittle Microcracking Solids“. In Computational Mechanics ’95, 1953–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79654-8_325.
Der volle Inhalt der QuelleKawamura, Kiyoshi, Hiroyuki Sawano und Tsuyoshi Ueta. „Analysis of Hall Resistance Anomalies with Wave Mechanics“. In Science and Technology of Mesoscopic Structures, 87–92. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-66922-7_9.
Der volle Inhalt der QuelleHorst, Thomas, Gert Heinrich, Martin Schneider, Annegret Schulze und Mirko Rennert. „Linking Mesoscopic and Macroscopic Aspects of Crack Propagation in Elastomers“. In Fracture Mechanics and Statistical Mechanics of Reinforced Elastomeric Blends, 129–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37910-9_4.
Der volle Inhalt der QuelleYing, Zong Quan, Cheng Bin Du und Li Guo Sun. „Mesoscopic Numerical Simulation Method for Fracture of Concrete“. In Advances in Fracture and Damage Mechanics VI, 213–16. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-448-0.213.
Der volle Inhalt der QuelleMukherjee, Partha P., und Qinjun Kang. „Electrodics in Electrochemical Energy Conversion Systems: A Mesoscopic Formalism“. In Mechanics Over Micro and Nano Scales, 217–58. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9601-5_7.
Der volle Inhalt der QuelleMoorthy, Suresh, und Somnath Ghosh. „Mesoscopic Analysis of Small Deformation in Heterogeneous Materials Using Voronoi Cell Finite Element Method“. In Computational Mechanics ’95, 1916–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79654-8_319.
Der volle Inhalt der QuellePeerlings, Robert H. J., Y. Kasyanyuk, A. Roy und M. G. D. Geers. „Higher-Order Mesoscopic Theories of Plasticity Based on Discrete Dislocation Interactions“. In Advances in Mechanics and Mathematics, 245–50. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5695-8_25.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mesoscopic mechanics"
Lyu, Haoqi, Wuhao Yang, Yuxi Wang, Mingye Du, Zheng Wang, Xingyin Xiong, Tao Wu und Xudong Zou. „Enhanced Magneto-Mechanical Coupling with FeGaB/AlN Thin Films in Mesoscopic Silicon-Free Coupled-Structure Magnetoelectric Resonators“. In 2024 IEEE SENSORS, 1–4. IEEE, 2024. https://doi.org/10.1109/sensors60989.2024.10784514.
Der volle Inhalt der QuelleBrune, M., J. M. Raimond und S. Haroche. „Mesoscopic entanglement in cavity QED experiments“. In MYSTERIES, PUZZLES AND PARADOXES IN QUANTUM MECHANICS. ASCE, 1999. http://dx.doi.org/10.1063/1.57870.
Der volle Inhalt der QuelleCaminati, Marco. „Einstein Podolsky Rosen correlations involving mesoscopic quantum systems“. In QUANTUM MECHANICS: Are There Quantum Jumps? - and On the Present Status of Quantum Mechanics. AIP, 2006. http://dx.doi.org/10.1063/1.2219351.
Der volle Inhalt der QuelleMigliore, R., A. Messina und A. Napoli. „Quantum interference effects on the supercurrent in mesoscopic Josephson junctions“. In MYSTERIES, PUZZLES AND PARADOXES IN QUANTUM MECHANICS. ASCE, 1999. http://dx.doi.org/10.1063/1.57887.
Der volle Inhalt der QuelleGrymin, Witold, Marcin Koniorczyk, Francesco Pesavento und Dariusz Gawin. „Macroscopic and mesoscopic approach to the alkali-silica reaction in concrete“. In COMPUTER METHODS IN MECHANICS (CMM2017): Proceedings of the 22nd International Conference on Computer Methods in Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5019083.
Der volle Inhalt der QuelleXu, Y., und Z. Lin. „A mesoscopic domain decomposition approach composed with preconditioned conjugate gradient for modeling concrete“. In 16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics. CIMNE, 2024. http://dx.doi.org/10.23967/c.wccm.2024.069.
Der volle Inhalt der QuelleXu, Y., und Z. Lin. „A mesoscopic domain decomposition approach composed with preconditioned conjugate gradient for modeling concrete“. In 16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics. CIMNE, 2024. https://doi.org/10.23967/wccm.2024.069.
Der volle Inhalt der QuelleMikushina, V. A., und I. Yu Smolin. „Simulation of mesoscopic fracture of ceramics with hierarchical porosity“. In MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2018): Proceedings of the 12th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures. Author(s), 2018. http://dx.doi.org/10.1063/1.5084402.
Der volle Inhalt der QuelleVandoren, B., und K. De Proft. „MESOSCOPIC MODELLING OF MASONRY USING GFEM: A COMPARISON OF STRONG AND WEAK DISCONTINUITY MODELS“. In 10th World Congress on Computational Mechanics. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/meceng-wccm2012-18040.
Der volle Inhalt der QuelleBary, B., C. Bourcier und T. Helfer. „Numerical Analysis of Concrete Creep on Mesoscopic 3D Specimens“. In 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479346.131.
Der volle Inhalt der Quelle