Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mesophyll“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mesophyll" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mesophyll"
Sulistiarini, Diah, und Eka Fatmawati Tihurua. „Leaf Anatomy of Three Varians of Arundina graminifolia (D. Don.) Hochr“. Jurnal Natur Indonesia 11, Nr. 2 (20.11.2012): 78. http://dx.doi.org/10.31258/jnat.11.2.78-82.
Der volle Inhalt der QuelleLiljebjelke, Karen A., und Vincent R. Franceschi. „Differentiation of Mesophyll and Paraveinal Mesophyll in Soybean Leaf“. Botanical Gazette 152, Nr. 1 (März 1991): 34–41. http://dx.doi.org/10.1086/337860.
Der volle Inhalt der QuelleLersten, Nels R., und Curt L. Brubaker. „Paraveinal mesophyll, and its relationship to vein endings, in Solidago canadensis (Asteraceae)“. Canadian Journal of Botany 67, Nr. 5 (01.05.1989): 1429–33. http://dx.doi.org/10.1139/b89-190.
Der volle Inhalt der QuelleKevekordes, K. G., M. E. McCully und M. J. Canny. „The occurrence of an extended bundle sheath system (paraveinal mesophyll) in the legumes“. Canadian Journal of Botany 66, Nr. 1 (01.01.1988): 94–100. http://dx.doi.org/10.1139/b88-014.
Der volle Inhalt der QuelleKim, InSun, und David G. Fisher. „Structural aspects of the leaves of seven species of Portulaca growing in Hawaii“. Canadian Journal of Botany 68, Nr. 8 (01.08.1990): 1803–11. http://dx.doi.org/10.1139/b90-233.
Der volle Inhalt der QuellePshennikova, L. M. „The implication of leaf anatomical structure for the selective breeding of lilacs“. Vavilov Journal of Genetics and Breeding 25, Nr. 5 (10.09.2021): 534–42. http://dx.doi.org/10.18699/vj21.060.
Der volle Inhalt der QuelleThéroux-Rancourt, Guillaume, Adam B. Roddy, J. Mason Earles, Matthew E. Gilbert, Maciej A. Zwieniecki, C. Kevin Boyce, Danny Tholen, Andrew J. McElrone, Kevin A. Simonin und Craig R. Brodersen. „Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size“. Proceedings of the Royal Society B: Biological Sciences 288, Nr. 1945 (24.02.2021): 20203145. http://dx.doi.org/10.1098/rspb.2020.3145.
Der volle Inhalt der QuelleGibadulina, I. I., M. V. Larionov und N. N. Maslennikova. „Anatomical and Morphological Features of the Leaves of Tilia Cordata Mill. As an Indicator of the Adaptive Capabilities of the Species to the Conditions of the Urban Environment“. IOP Conference Series: Earth and Environmental Science 988, Nr. 3 (01.02.2022): 032082. http://dx.doi.org/10.1088/1755-1315/988/3/032082.
Der volle Inhalt der QuelleZvereva, G. K. „The structure of the mesophyll and assimilative apparatus of the chloridoid grasses leaves“. Проблемы ботаники южной сибири и монголии 19, Nr. 2 (08.10.2020): 202–6. http://dx.doi.org/10.14258/pbssm.2020103.
Der volle Inhalt der QuelleFujita, Takashi, Ko Noguchi, Hiroshi Ozaki und Ichiro Terashima. „Confirmation of mesophyll signals controlling stomatal responses by a newly devised transplanting method“. Functional Plant Biology 46, Nr. 5 (2019): 467. http://dx.doi.org/10.1071/fp18250.
Der volle Inhalt der QuelleDissertationen zum Thema "Mesophyll"
Sheard, J. P. „Glucose uptake by pea mesophyll protoplasts“. Thesis, University of East Anglia, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235210.
Der volle Inhalt der QuelleLee, Joonsang. „Influence of the mesophyll on stomatal opening“. Thesis, University of Aberdeen, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314415.
Der volle Inhalt der QuelleNewell, Jane Marie. „Vacuole development in evacuolated oat mesophyll protoplasts“. Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295919.
Der volle Inhalt der QuelleHörtensteiner, Stefan. „Re-formation of vacuoles in evacuolated tobacco mesophyll protoplasts /“. [S.l.] : [s.n.], 1993. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10426.
Der volle Inhalt der QuelleStoll, Marion. „Aktivierende T-DNA-Mutagenese in Nicotiana-tabacum-Mesophyll-Protoplasten“. [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=96491638X.
Der volle Inhalt der QuelleShrestha, Arjina. „Variability in mesophyll conductance to CO2 in grain legumes“. Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17559.
Der volle Inhalt der QuelleVosloh, Daniel. „Subcellular compartmentation of primary carbon metabolism in mesophyll cells of Arabidopsis thaliana“. Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5553/.
Der volle Inhalt der QuelleMetabolism in plant cells is highly compartmented, with many pathways involving reactions in more than one compartment. For example, during photosynthesis in leaf mesophyll cells, primary carbon fixation and starch synthesis take place in the chloroplast, whereas sucrose is synthesized in the cytosol and stored in the vacuole. These reactions are tightly regulated to keep a fine balance between the carbon pools of the different compartments and to fulfil the energy needs of the organelles. I applied a technique which fractionates the cells under non-aqueous conditions, whereby the metabolic state is frozen at the time of harvest and held in stasis throughout the fractionation procedure. With the combination of non-aqueous fractionation and mass spectrometry based metabolite measurements (LC-MS/MS, GC-MS) it was possible to investigate the intracellular distributions of the intermediates of photosynthetic carbon metabolism and its products in subsequent metabolic reactions. With the knowledge about the in vivo concentrations of these metabolites under steady state photosynthesis conditions it was possible to calculate the mass action ratio and change in Gibbs free energy in vivo for each reaction in the pathway, to determine which reactions are near equilibrium and which are far removed from equilibrium. The Km value and concentration of each enzyme were compared with the concentrations of its substrates in vivo to assess which reactions are substrate limited and so sensitive to changes in substrate concentration. Several intermediates of the Calvin-Benson cycle are substrates for other pathways, including dihydroxyacetone-phosphate (DHAP,sucrose synthesis), fructose 6-phosphate (Fru6P, starch synthesis), erythrose 4-phosphate (E4P,shikimate pathway) and ribose 5-phosphate (R5P, nucleotide synthesis). Several of the enzymes that metabolise these intermediates, and so lie at branch points in the pathway, are triose-phosphate isomerase (DHAP), transketolase (E4P, Fru6P), sedoheptulose-1,7-bisphosphate aldolase (E4P) and ribose-5-phosphate isomerase (R5P) are not saturated with their respective substrate as the metabolite concentration is lower than the respective Km value. In terms of metabolic control these are the steps that are most sensitive to changes in substrate availability, while the regulated irreversible reactions of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase are relatively insensitive to changes in the concentrations of their substrates. In the pathway of sucrose synthesis it was shown that the concentration of the catalytic binding site of the cytosolic aldolase is lower than the substrate concentration of DHAP, and that the concentration of Suc6P is lower than the Km of sucrose-phosphatase for this substrate. Both the sucrose-phosphate synthase and sucrose-phosphatase reactions are far removed from equilibrium in vivo. In wild type A. thaliana Columbia-0 leaves, all of the ADPGlc was found to be localised in the chloroplasts. ADPglucose pyrophosphorylase is localised to the chloroplast and synthesises ADPGlc from ATP and Glc1P. This distribution argues strongly against the hypothesis proposed by Pozueta-Romero and colleagues that ADPGlc for starch synthesis is produced in the cytosol via ADP-mediated cleavage of sucrose by sucrose synthase. Based on this observation and other published data it was concluded that the generally accepted pathway of starch synthesis from ADPGlc produced by ADPglucose pyrophosphorylase in the chloroplasts is correct, and that the alternative pathway is untenable. Within the pathway of starch synthesis the concentration of ADPGlc was found to be well below the Km value of starch synthase for ADPGlc, indicating that the enzyme is substrate limited. A general finding in the comparison of the Calvin-Benson cycle with the synthesis pathways of sucrose and starch is that many enzymes in the Calvin Benson cycle have active binding site concentrations that are close to the metabolite concentrations, while for nearly all enzymes in the synthesis pathways the active binding site concentrations are much lower than the metabolite concentrations.
Freiesleben, Konstanze. „Biosynthese der Luteolin-Glucuronide im Roggenprimärblatt-Mesophyll: Charakterisierung der Glucuronosyltransferasen“. [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971655162.
Der volle Inhalt der QuelleLin, Quan. „Differentiation of tracheary elements from mesophyll cells of Zinnia elegens L“. Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358693.
Der volle Inhalt der QuelleGillham, Malcolm C. „Biosysmetric studies on some mesophyll-feeding leafhoppers associated with trees and shrubs“. Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375963.
Der volle Inhalt der QuelleBücher zum Thema "Mesophyll"
Morrison, Paul. Paul Morrison: Mésophylle = mesophyll. Grenoble: Magasin, 2003.
Den vollen Inhalt der Quelle findenSheard, Jonathan P. Glucose uptake by pea mesophyll protoplasts. Norwich: University of East Anglia, 1988.
Den vollen Inhalt der Quelle findenMcCutcheon, Steve L. Amino acid transport: The special case of a H/L-glutamate cotransport system in Asparagus sprengeri mesophyll cells. St. Catharines [Ont.]: Dept. of Biological Sciences, Brock University, 1987.
Den vollen Inhalt der Quelle findenLiljebjelke, Karen Anne. Paraveinal mesophyll differentiation and patterns of DNA and RNA synthesis during soybean leaf ontogeny. 1988.
Den vollen Inhalt der Quelle findenMawson, Bruce Thomas. Thermal acclimation of photosynthesis in mesophyll and guard cell chloroplasts of the Arctic plant, "Saxifraga cernua". 1986.
Den vollen Inhalt der Quelle findenKrakat, Niclas. Molekularbiologische Erfassung Der Bakteriellen Diversitat in Mesophil Und Thermophil Betriebenen Biogasfermentern Mit Korrelation Zu Verfahrenstechnischen Prozessgrossen. Logos Verlag Berlin, 2012.
Den vollen Inhalt der Quelle findenLugilde Yáñez, Juan, Ignacio Bárbara und Viviana Peña. Algas coralinas (Corallinophycidae, Rhodophyta) de Galicia y norte de Portugal. 2022. Aufl. Servizo de Publicacións da UDC, 2022. http://dx.doi.org/10.17979/spudc.000004.
Der volle Inhalt der QuelleBuchteile zum Thema "Mesophyll"
Meyer, Y. „Mitotic Cycle of Mesophyll Protoplasts“. In Proceedings in Life Sciences, 143–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70144-3_17.
Der volle Inhalt der QuelleMeyer, Yves, Yvette Chartier, Jean Grosset, Isabelle Marty, Christophe Brugidou, Paulo Marinho und Renata Rivera. „Gene Expression in Mesophyll Protoplasts“. In Morphogenesis in Plants, 221–36. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1265-7_12.
Der volle Inhalt der QuelleMeyer, Y., Y. Chartier und J. Grosset. „Why do Mesophyll Protoplasts Dedifferentiate?“ In Progress in Plant Protoplast Research, 133–34. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2788-9_47.
Der volle Inhalt der QuelleSugiyama, Munetaka, und Hiroo Fukuda. „Zinnia mesophyll culture system to study xylogenesis“. In Plant Tissue Culture Manual, 91–105. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0303-9_5.
Der volle Inhalt der QuelleWallin, A. „Isolation and Culture of Apple Mesophyll Protoplasts“. In Progress in Plant Protoplast Research, 103–4. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2788-9_35.
Der volle Inhalt der QuelleJover, R., M. C. Brisa und J. Segura. „Factors Influencing Digitalis Obscura Mesophyll Protoplast Development“. In Progress in Plant Protoplast Research, 111–12. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2788-9_39.
Der volle Inhalt der QuelleSugiyama, Munetaka, und Hiroo Fukuda. „Zinnia mesophyll culture system to study xylogenesis“. In Plant Tissue Culture Manual, 1017–31. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0103-2_55.
Der volle Inhalt der QuelleGenty, Bernard, Sylvie Meyer, Clément Piel, Franz Badeck und Rodolphe Liozon. „CO2 Diffusion Inside Leaf Mesophyll of Ligneous Plants“. In Photosynthesis: Mechanisms and Effects, 3961–66. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_919.
Der volle Inhalt der QuelleUemoto, Kyohei, Takashi Araki und Motomu Endo. „Isolation of Arabidopsis Palisade and Spongy Mesophyll Cells“. In Methods in Molecular Biology, 141–48. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8657-6_9.
Der volle Inhalt der QuelleNyman, Marie, und Anita Wallin. „Plant Regeneration from Strawberry (Fragaria Ananassa) Mesophyll Protoplasts“. In Progress in Plant Protoplast Research, 101–2. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2788-9_34.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mesophyll"
Zvereva, G. K. „The structure of the needles mesophyll in species of the Pinaceae family with flat leaves“. In Problems of studying the vegetation cover of Siberia. TSU Press, 2020. http://dx.doi.org/10.17223/978-5-94621-927-3-2020-13.
Der volle Inhalt der QuelleZhang, Gaina. „Plant regeneration from mesophyll protoplasts of Radix Gentianae Macrophyllae“. In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5966163.
Der volle Inhalt der QuelleKorpiun, P., und B. Büchner. „Frequency dependence of the photothermal signal on mesophyll cell sizes of leaves“. In PHOTOACOUSTIC AND PHOTOTHERMAL PHENOMENA. ASCE, 1999. http://dx.doi.org/10.1063/1.58146.
Der volle Inhalt der QuelleSu, Poyu, Ting-Ying Lee und Szu-Yu Chen. „4D Two-photon Fluorescence Hyperspectral Image of Mesophyll Cells inside Intact Leaves“. In Frontiers in Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/fio.2015.jtu4a.85.
Der volle Inhalt der QuelleGataullina, M. O., A. E. Gribanova, D. N. Fedorin und A. T. Eprintsev. „Features of the functioning of malate dehydrogenase in corn mesophyll under different lighting conditions“. In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-115.
Der volle Inhalt der QuelleMaleva, M. G., O. S. Sinenko, I. S. Kiseleva, D. Latowski und K. Strzałka. „REACTION OF PHOTOSYNTHETIC APPARATUS TO TEMPERATURE STRESS IN BARLEY MESOPHYLL CELLS OF DIFFERENT AGE“. In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-496-500.
Der volle Inhalt der QuelleKim, Hyejeong, Kiwoong Kim und Sang Joon Lee. „Compact and Thermosensitive Micropump Inspired by Plant Leaf“. In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69148.
Der volle Inhalt der QuelleCheryatova, Yu S. „Features of the anatomy of the leaves of Laurocerasus officinalis M. Roem.“ In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-80.
Der volle Inhalt der QuelleValeriu Iancu, Valeriu, Laura Adriana Bucur, Verginica Schröder und Manuela Rossemary Apetroaei. „PRELIMINARY STUDIES RELATED TO MICROSCOPY AND THE SEDEM EXPERT SYSTEM PROFILE ON FREEZED-DRIED EXTRACT OF LYTHRI HERBA“. In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b1/v3/16.
Der volle Inhalt der QuelleRöckmann, Thomas, Getachew Adnew, Thijs Pons, Gerbrand Koren und Wouter Peters. „Exploring the use of 17O-excess in CO2 for estimating mesophyll conductance of C3 and C4 plants“. In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.12010.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Mesophyll"
Lu, P., W. H. Jr Outlaw, B. G. Smith und G. A. Freed. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. A new mechanism for the regulation of stomatal-aperture size in intact leaves: Accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba L. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/629405.
Der volle Inhalt der QuelleHochman, Ayala, Thomas Nash III und Pamela Padgett. Physiological and Biochemical Characterization of the Effects of Oxidant Air Pollutants, Ozone and Gas-phase Nitric Acid, on Plants and Lichens for their Use as Early Warning Biomonitors of these Air Pollutants. United States Department of Agriculture, Januar 2011. http://dx.doi.org/10.32747/2011.7697115.bard.
Der volle Inhalt der QuelleBray, Elizabeth, Zvi Lerner und Alexander Poljakoff-Mayber. The Role of Phytohormones in the Response of Plants to Salinity Stress. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7613007.bard.
Der volle Inhalt der QuellePhilosoph-Hadas, Sonia, Richard Crain, Shimon Meir, Nehemia Aharoni und Susan Lurie. Calcium-Mediated Signal Transduction during Leaf Senescence. United States Department of Agriculture, November 1995. http://dx.doi.org/10.32747/1995.7604925.bard.
Der volle Inhalt der QuelleShahak, Yosepha, und Donald R. Ort. Physiological Bases for Impaired Photosynthetic Performance of Chilling-Sensitive Fruit Trees. United States Department of Agriculture, Mai 2001. http://dx.doi.org/10.32747/2001.7575278.bard.
Der volle Inhalt der QuellePell, Eva J., Sarah M. Assmann, Amnon Schwartz und Hava Steinberger. Ozone Altered Stomatal/Guard Cell Function: Whole Plant and Single Cell Analysis. United States Department of Agriculture, Dezember 2000. http://dx.doi.org/10.32747/2000.7573082.bard.
Der volle Inhalt der Quelle