Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Membrane receptor-Ligand interactions“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Membrane receptor-Ligand interactions" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Membrane receptor-Ligand interactions"
Langelaan, David N., und Jan K. Rainey. „Membrane catalysis of peptide–receptor bindingThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process.“ Biochemistry and Cell Biology 88, Nr. 2 (April 2010): 203–10. http://dx.doi.org/10.1139/o09-129.
Der volle Inhalt der QuelleLedig, Matthias M., Fawaz Haj, John L. Bixby, Andrew W. Stoker und Bernhard K. Mueller. „The Receptor Tyrosine Phosphatase Crypα Promotes Intraretinal Axon Growth“. Journal of Cell Biology 147, Nr. 2 (18.10.1999): 375–88. http://dx.doi.org/10.1083/jcb.147.2.375.
Der volle Inhalt der QuelleBehling, Ronald W., und Lynn W. Jelinski. „Importance of the membrane in ligand-receptor interactions“. Biochemical Pharmacology 40, Nr. 1 (Juli 1990): 49–54. http://dx.doi.org/10.1016/0006-2952(90)90177-m.
Der volle Inhalt der QuelleKATZ, A., D. RHODES und L. HERBETTE. „Role of the membrane bilayer in ligand-receptor interactions“. Journal of Molecular and Cellular Cardiology 18 (1986): 12. http://dx.doi.org/10.1016/s0022-2828(86)80522-3.
Der volle Inhalt der QuelleWang, Li, Xin-Pu Hou, Angelica Ottova und H. Ti Tien. „Receptor–ligand interactions in a reconstituted bilayer lipid membrane“. Electrochemistry Communications 2, Nr. 5 (Mai 2000): 287–89. http://dx.doi.org/10.1016/s1388-2481(00)00008-4.
Der volle Inhalt der QuelleTorres, Manuel, Catalina Ana Rosselló, Paula Fernández-García, Victoria Lladó, Or Kakhlon und Pablo Vicente Escribá. „The Implications for Cells of the Lipid Switches Driven by Protein–Membrane Interactions and the Development of Membrane Lipid Therapy“. International Journal of Molecular Sciences 21, Nr. 7 (27.03.2020): 2322. http://dx.doi.org/10.3390/ijms21072322.
Der volle Inhalt der QuelleCao, Shengya, Sean M. Peterson, Sören Müller, Mike Reichelt, Christian McRoberts Amador und Nadia Martinez-Martin. „A membrane protein display platform for receptor interactome discovery“. Proceedings of the National Academy of Sciences 118, Nr. 39 (16.09.2021): e2025451118. http://dx.doi.org/10.1073/pnas.2025451118.
Der volle Inhalt der QuelleScheel, Andreas A., Bettina Funsch, Michael Busch, Gabriele Gradl, Johannes Pschorr und Martin J. Lohse. „Receptor-Ligand Interactions Studied with Homogeneous Fluorescence-Based Assays Suitable for Miniaturized Screening“. Journal of Biomolecular Screening 6, Nr. 1 (Februar 2001): 11–18. http://dx.doi.org/10.1177/108705710100600103.
Der volle Inhalt der QuelleYang, Yun-Hee, und Jwa-Min Nam. „Single Nanoparticle Tracking-Based Detection of Membrane Receptor−Ligand Interactions“. Analytical Chemistry 81, Nr. 7 (April 2009): 2564–68. http://dx.doi.org/10.1021/ac802477h.
Der volle Inhalt der QuelleValenzano, Kenneth J., Wendy Miller, Jared N. Kravitz, Philippe Samama, Dan Fitzpatrick und Kevin Seeley. „Development of a Fluorescent Ligand-Binding Assay Using the AcroWell Filter Plate“. Journal of Biomolecular Screening 5, Nr. 6 (Dezember 2000): 455–61. http://dx.doi.org/10.1177/108705710000500608.
Der volle Inhalt der QuelleDissertationen zum Thema "Membrane receptor-Ligand interactions"
Dogra, Navneet. „INVESTIGATING PROTEIN - BILAYER COMPLEXES: A STUDY OF LIGAND - RECEPTOR INTERACTIONS AT MODEL MEMBRANE SURFACE BY USING ELECTRONIC ABSORPTION SPECTROSCOPY AND FLUORESCENCE RESONANCE ENERGY TRANSFER“. OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/812.
Der volle Inhalt der QuelleSahai, Michelle Asha. „Computational studies of ligand-water mediated interactions in ionotropic glutamate receptors“. Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:b86d2f5a-3554-44c0-b985-5693241369ec.
Der volle Inhalt der QuellePiguet, Joachim. „Advanced Fluorescence Microscopy to Study Plasma Membrane Protein Dynamics“. Doctoral thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-178147.
Der volle Inhalt der QuelleQC 20151217
Cinier, Justine. „Importance et potentiel thérapeutique d'un nouveau couple récepteur-ligand dans l'inhibition des lymphocytes T CD8 par les lymphocytes T régulateurs dans les tumeurs“. Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10336.
Der volle Inhalt der QuelleThe presence of CD8 T cells in the tumor microenvironment (TME) correlates with good prognosis in many types of solid cancers. In the periphery, regulatory T cells (Treg) play a major role in maintaining immune homeostasis and preventing the development of autoimmune pathologies. However, in the TME, Treg (TA-Treg) have an unfavorable prognostic impact by inhibiting the anti-tumor immune response. Therapeutically, it is essential to eliminate these TA-Treg or their function to restore an effective anti-tumor immune response. For this, it remains important to identify membrane molecules allowing the selective targeting of these TA-Treg without affecting the Treg present in the periphery to avoid any autoimmune reaction. The analysis of public scRNA-seq data comparing T cells (Treg, CD8, CD4) from tumor, healthy tissue and blood, made it possible to identify the selective expression of CD177 by a subpopulation of TA-Treg in different solid tumors. If this glycoprotein is known for its involvement in the extravasation and survival of neutrophils, its role on Treg has been little described except in a few studies confirming the expression of CD177 on TA-Treg of several types of tumors and showing a suppressive impact of CD177+ TA-Treg in cocultures with naïve CD4 T cells. However, the phenotypic and functional characterization of these Treg remains little explored. CD177 interacts with PECAM-1 which is involved in T cells transmigration through homophilic interaction of distal extracellular immunoglobulin-like domains (IgD1/D2) with endothelial cells. Furthermore, it has been described that interaction with extracellular PECAM-1 IgD6, CD177 binding site, transmits a negative signal via inhibitory intracellular motifs (ITIM) and recruitment of SHP2 which blocks TCR signaling and the proliferation of T cells. Reanalysis of public scRNA-seq data from intra-tumoral T cells shows the restriction of PECAM1 expression to clusters of memory effector CD8 T cells suggesting that they could be the target of the immunosuppressive function of CD177+ Treg in the TME. Thus, with the aim of identifying a Treg suppression mechanism specific to effector CD8 T cells in the TME, it is important to characterize in depth these CD177+ TA-Treg and to identify their interactions with PECAM-1+ CD8 T cells in the TME and their impact on the function of these CD8 T cells. This thesis work demonstrated, in several tumor types, that CD177 identifies a population of TA- Treg, with an activated phenotype. PECAM-1, the target of CD177, is expressed in the TME by polyfunctional effector CD8 T cells (GzmK, IFNγ, TNFα) with a high proliferation capacity. In situ on tumor sections, multi-immunofluorescence analyses showed the colocalization of CD177+ Treg and PECAM-1+ CD8 T cells in the tumor stroma, suggesting a link between these two populations. Furthermore, engagement of PECAM-1 IgD6, CD177 binding domain, reduces the activation and functions of PECAM-1+ CD8 T cells induced by the TCR signal by decreasing pZAP-70 and IFNү secretion. Finally, initial results on tumors have shown that the culture of CD8 T cells with CD177+ TA-Treg reduces the proliferation and secretion of IFNγ by PECAM-1+ CD8 T cells and the addition of an anti-CD177 makes it possible to partly rescue this inhibition, suggesting the role of the [CD177/PECAM-1] axis in the inhibition of PECAM-1+ CD8 T cells by CD177+ TA-Treg. The [CD177/PECAM-1] interaction represents the first demonstration of a membrane receptor/ligand pair involved in the selective inhibition of CD8 T cells effectors by TA-Treg in the TME and CD177 appears as a promising target to specifically raise suppression mediated by TA-Treg in the TME without altering those in the periphery
Mahlberg, Florence. „Les sites membranaires de liaison specifiques des hdl : caracterisation du ligand, aspects fonctionnels“. Paris 7, 1987. http://www.theses.fr/1987PA077223.
Der volle Inhalt der QuelleHénault, Camille. „The Role of the M4 α-Helix in Lipid Sensing by a Pentameric Ligand-Gated Ion Channel“. Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42519.
Der volle Inhalt der QuelleLópez, Muñoz Laura. „Homology modeling and structural analysis of the antipsychotic drugs receptorome“. Doctoral thesis, Universitat Pompeu Fabra, 2010. http://hdl.handle.net/10803/7228.
Der volle Inhalt der QuelleThe study started with obtaining homology models for all the receptors putatively involved in the antipsychotic drugs receptorome, suitable for building consistent drug-receptor complexes. These complexes were structurally analyzed and compared using multivariate statistical methods, which in turn allowed the identification of the relationship between the pharmacological properties of the antipsychotic drugs and the structural differences in the receptor targets. The results can be exploited for the design of safer and more effective antipsychotic drugs with an optimum binding profile.
Tradicionalmente se asumía que los fármacos terapéuticamente efectivos actuaban interaccionando con un único receptor. Actualmente está ampliamente reconocido que el efecto farmacológico de la mayoría de los fármacos es más complejo y abarca a un conjunto de receptores, algunos asociados a los efectos terapéuticos y otros a los secundarios y toxicidad. Los fármacos antipsicóticos son un ejemplo de compuestos eficaces que se caracterizan por unirse a varios receptores simultáneamente (principalmente a receptores unidos a proteína G, GPCR). El trabajo de la presente tesis se ha centrado en el estudio de los mecanismos moleculares que determinan el perfil de afinidad de unión por múltiples receptores de los fármacos antipsicóticos.
En primer lugar se construyeron modelos de homología para todos los receptores potencialmente implicados en la actividad farmacológica de dichos fármacos, usando una metodología adecuada para construir complejos fármaco-receptor consistentes. La estructura de estos complejos fue analizada y se llevó a cabo una comparación mediante métodos estadísticos multivariantes, que permitió la identificación de asociaciones entre la actividad farmacológica de los fármacos antipsicóticos y diferencias estructurales de los receptores diana. Los resultados obtenidos tienen interés para ser explotados en el diseño de fármacos antipsicóticos con un perfil farmacológico óptimo, más seguros y eficaces.
Dunand, Christophe. „Perception d'un signal xyloglucane par des protéines membranaires et mise en évidence d'activité xyloglucane endotransglycosylane induite“. Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10111.
Der volle Inhalt der QuelleMa, Haijun. „Single molecule force spectroscopy of membrane receptor-ligand interactions : a model study“. 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=370104&T=F.
Der volle Inhalt der QuelleBaradji, Issa. „The Role of Apical Membrane Antigen-1 in Erythrocyte Invasion by the Zoonotic Apicomplexan Babesia microti“. 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2008-08-68.
Der volle Inhalt der QuelleBücher zum Thema "Membrane receptor-Ligand interactions"
Tax, Frans. Receptor-like Kinases in Plants: From Development to Defense. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenMa, Haijun. Single molecule force spectroscopy of membrane receptor-ligand interactions: A model study. 2005.
Den vollen Inhalt der Quelle findenKemmerling, Birgit, und Frans Tax. Receptor-like Kinases in Plants: From Development to Defense. Springer, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Membrane receptor-Ligand interactions"
Lei, Li, M. Page Haynes und Jeffrey R. Bender. „Estrogen-Stimulated, Membrane-Initiated Receptor-Ligand Interactions in Vascular Cells“. In The Identities of Membrane Steroid Receptors, 37–45. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0339-2_5.
Der volle Inhalt der QuelleIsraelachvili, J., D. Leckband, F. J. Schmitt, J. Zasadzinski, S. Walker und S. Chiruvolu. „Direct Measurements of Specific Ligand-Receptor Interactions Between Model Membrane Surfaces“. In Studying Cell Adhesion, 37–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-03008-0_3.
Der volle Inhalt der QuelleJung, Seung-Yong, Edward T. Castellana, Matthew A. Holden, Tinglu Yang und Paul S. Cremer. „Multivalent Ligand-Receptor Interactions on Planar Supported Membranes An On-Chip Approach“. In Nanoscale Assembly, 99–117. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-25656-3_6.
Der volle Inhalt der QuelleOrgovan, Norbert, Beatrix Peter, Szilvia Bősze, Jeremy J. Ramsden, Bálint Szabó und Robert Horvath. „Label-Free Profiling of Cell Adhesion: Determination of the Dissociation Constant for Native Cell Membrane Adhesion Receptor-Ligand Interaction“. In Methods in Pharmacology and Toxicology, 327–38. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2617-6_18.
Der volle Inhalt der QuelleStrange, Philip G. „Charcoal Adsorption for Separating Bound and Free Radioligand in Radioligand Binding Assays“. In Receptor-Ligand Interactions, 247–54. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199630905.003.0008.
Der volle Inhalt der QuelleHulme, E. C. „Centrifugation Binding Assays“. In Receptor-Ligand Interactions, 235–46. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199630905.003.0007.
Der volle Inhalt der QuelleHulme, E. C., und N. J. Buckley. „Receptor Preparations for Binding Studies“. In Receptor-Ligand Interactions, 177–212. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199630905.003.0005.
Der volle Inhalt der QuelleDolly, J. Oliver. „Polypeptide Neurotoxins as Probes for Certain Voltage-Dependent K+ Channels“. In Receptor-Ligand Interactions, 37–61. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199630905.003.0003.
Der volle Inhalt der QuelleHulme, E. C., und N. J. m. Birdsall. „Strategy and Tactics in Receptor Binding Studies“. In Receptor-Ligand Interactions, 63–176. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199630905.003.0004.
Der volle Inhalt der QuelleWang, Jian-xin, Henry I. Yamamura, Wan Wang und william R. Roeske. „The use of the Filtration Technique in in Vitro Radioligand Binding Assays for Membrane-Bound and Solubilized Receptors“. In Receptor-Ligand Interactions, 213–34. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199630905.003.0006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Membrane receptor-Ligand interactions"
Zhu, Cheng, und Scott E. Chesla. „Dissociation of Individual Molecular Bonds Under Force“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0286.
Der volle Inhalt der QuelleSarvestani, Alireza. „Kinetics of Membrane Spreading on Compliant Bio-Adhesive Substrates“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13321.
Der volle Inhalt der QuelleChesla, Scott E., Bryan T. Marshall und Cheng Zhu. „Measuring the Probability of Receptor Extraction From the Cell Membrane“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0262.
Der volle Inhalt der QuelleAuthi, K. S., B. J. Evenden und N. Crawford. „ACTION OF GTPγS [GUANOSINE 5∲-0-(3-THIOPHOSPHATE)] ON SAPONIN-PERMEABILISED PLATELETS: INVOLVEMENT OF 'G' PROTEINS IN PLATELET ACTIVATION“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644514.
Der volle Inhalt der QuelleGupta, Vijay K., und Charles D. Eggleton. „A 3-D Computational Model of L-Selectin-PSGL-1 Dependent Homotypic Leukocyte Binding and Rupture in Shear Flow“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80862.
Der volle Inhalt der QuelleN’dri, Narcisse, Wei Shyy, Roger Tran-Son-Tay und H. S. Udaykumar. „A Multi-Scale Model for Cell Adhesion and Deformation“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2069.
Der volle Inhalt der QuelleMurgasova, Renata, Jan Sabo, Angelica L. Ottova und H. Ti Tien. „Ligand-receptor contact interactions using supported bilayer lipid membranes: cyclic voltammetry studies with electron mediators“. In Smart Structures & Materials '95, herausgegeben von A. Peter Jardine. SPIE, 1995. http://dx.doi.org/10.1117/12.209816.
Der volle Inhalt der QuelleLi, Jianrong, Tianle Cheng und Martin Y. M. Chiang. „Finite Element Modelling of Cell Adhesion Mediated by Receptor-Ligand Binding“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206297.
Der volle Inhalt der QuelleGoldsmith, Harry L. „Observing Human Blood Cells in Flow Through Microchannels“. In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31330.
Der volle Inhalt der QuelleHawiger, J. „PLATELET RECEPTOR RECOGNITION DOMAINS AND THEIR SYNTHETIC PEPTIDE ANALOGS“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643726.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Membrane receptor-Ligand interactions"
Rafaeli, Ada, Russell Jurenka und Chris Sander. Molecular characterisation of PBAN-receptors: a basis for the development and screening of antagonists against Pheromone biosynthesis in moth pest species. United States Department of Agriculture, Januar 2008. http://dx.doi.org/10.32747/2008.7695862.bard.
Der volle Inhalt der QuelleAltstein, Miriam, und Ronald J. Nachman. Rational Design of Insect Control Agent Prototypes Based on Pyrokinin/PBAN Neuropeptide Antagonists. United States Department of Agriculture, August 2013. http://dx.doi.org/10.32747/2013.7593398.bard.
Der volle Inhalt der QuelleEyal, Yoram, und Sheila McCormick. Molecular Mechanisms of Pollen-Pistil Interactions in Interspecific Crossing Barriers in the Tomato Family. United States Department of Agriculture, Mai 2000. http://dx.doi.org/10.32747/2000.7573076.bard.
Der volle Inhalt der Quelle