Auswahl der wissenschaftlichen Literatur zum Thema „Membrane proteins“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Membrane proteins" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Membrane proteins":

1

Jin, Wenzhen, und Syoji T. akada. „1P103 Asymmetry in membrane protein sequence and structure : Glycine outside rule(Membrane proteins,Oral Presentations)“. Seibutsu Butsuri 47, supplement (2007): S49. http://dx.doi.org/10.2142/biophys.47.s49_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kühlbrandt, Werner. „Membrane proteins“. Current Opinion in Structural Biology 1, Nr. 4 (August 1991): 531–33. http://dx.doi.org/10.1016/s0959-440x(05)80073-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

KUHLBRANDT, W., und E. GOUAUX. „Membrane proteins“. Current Opinion in Structural Biology 9, Nr. 4 (August 1999): 445–47. http://dx.doi.org/10.1016/s0959-440x(99)80062-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hurley, James H. „Membrane Proteins“. Chemistry & Biology 10, Nr. 1 (Januar 2003): 2–3. http://dx.doi.org/10.1016/s1074-5521(03)00006-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gennis, Robert B., und Werner Kühlbrandt. „Membrane proteins“. Current Opinion in Structural Biology 3, Nr. 4 (August 1993): 499–500. http://dx.doi.org/10.1016/0959-440x(93)90074-u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Garavito, RMichael, und Arthur Karlin. „Membrane proteins“. Current Opinion in Structural Biology 5, Nr. 4 (August 1995): 489–90. http://dx.doi.org/10.1016/0959-440x(95)80033-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Picard, Martin. „Membrane proteins“. Biochimie 205 (Februar 2023): 1–2. http://dx.doi.org/10.1016/j.biochi.2023.01.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Walker, J. „Membrane proteins Membrane protein structure“. Current Opinion in Structural Biology 6, Nr. 4 (August 1996): 457–59. http://dx.doi.org/10.1016/s0959-440x(96)80109-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tan, Sandra, Hwee Tong Tan und Maxey C. M. Chung. „Membrane proteins and membrane proteomics“. PROTEOMICS 8, Nr. 19 (Oktober 2008): 3924–32. http://dx.doi.org/10.1002/pmic.200800597.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Brown, D., und G. L. Waneck. „Glycosyl-phosphatidylinositol-anchored membrane proteins.“ Journal of the American Society of Nephrology 3, Nr. 4 (Oktober 1992): 895–906. http://dx.doi.org/10.1681/asn.v34895.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Many proteins of eukaryotic cells are anchored to membranes by covalent linkage to glycosyl-phosphatidylinositol (GPI). These proteins lack a transmembrane domain, have no cytoplasmic tail, and are, therefore, located exclusively on the extracellular side of the plasma membrane. GPI-anchored proteins form a diverse family of molecules that includes membrane-associated enzymes, adhesion molecules, activation antigens, differentiation markers, protozoan coat components, and other miscellaneous glycoproteins. In the kidney, several GPI-anchored proteins have been identified, including uromodulin (Tamm-Horsfall glycoprotein), carbonic anhydrase type IV, alkaline phosphatase, Thy-1, BP-3, aminopeptidase P, and dipeptidylpeptidase. GPI-anchored proteins can be released from membranes with specific phospholipases and can be recovered from the detergent-insoluble pellet after Triton X-114 treatment of membranes. All GPI-anchored proteins are initially synthesized with a transmembrane anchor, but after translocation across the membrane of the endoplasmic reticulum, the ecto-domain of the protein is cleaved and covalently linked to a preformed GPI anchor by a specific transamidase enzyme. Although it remains obscure why so many proteins are endowed with a GPI anchor, the presence of a GPI anchor does confer some functional characteristics to proteins: (1) it is a strong apical targeting signal in polarized epithelial cells; (2) GPI-anchored proteins do not cluster into clathrin-coated pits but instead are concentrated into specialized lipid domains in the membrane, including so-called smooth pinocytotic vesicles, or caveoli; (3) GPI-anchored proteins can act as activation antigens in the immune system; (4) when the GPI anchor is cleaved by PI-phospholipase C or PI-phospholipase D, second messengers for signal transduction may be generated; (5) the GPI anchor can modulate antigen presentation by major histocompatibility complex molecules. Finally, at least one human disease, paroxysmal nocturnal hemoglobinuria, is a result of defective GPI anchor addition to plasma membrane proteins.

Dissertationen zum Thema "Membrane proteins":

1

Gill, Katrina Louise. „Protein-protein interactions in membrane proteins“. Thesis, University of Newcastle Upon Tyne, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hedin, Linnea E., Kristoffer Illergård und Arne Elofsson. „An Introduction to Membrane Proteins“. Stockholms universitet, Institutionen för biokemi och biofysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-69241.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
alpha-Helical membrane proteins are important for many biological functions. Due to physicochemical constraints, the structures of membrane proteins differ from the structure of soluble proteins. Historically, membrane protein structures were assumed to be more or less two-dimensional, consisting of long, straight, membrane-spanning parallel helices packed against each other. However, during the past decade, a number of the new membrane protein structures cast doubt on this notion. Today, it is evident that the structures of many membrane proteins are equally complex as for many soluble proteins. Here, we review this development and discuss the consequences for our understanding of membrane protein biogenesis, folding, evolution, and bioinformatics.

authorCount :3

3

Kota, Jhansi. „Membrane chaperones : protein folding in the ER membrane /“. Stockholm : Karolinska institutet, 2007. http://diss.kib.ki.se/2007/978-91-7357-102-9/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Whitehead, L. „Computer simulation of biological membranes and membrane bound proteins“. Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297412.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Armstrong, James P. „Artificial membrane-binding proteins“. Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Membrane functionalization is a promising strategy for augmenting cell performance in regenerative medicine. To this end, the design, construction, characterisation and cell affinity of protein-polymer surfactant nanoconstructs are presented. Nanoconstructs of eGFP were synthesised that exhibited near-native structure and function, as well as effective and persistent membrane affinity. Human mesenchymal stem cells were labelled for up to ten days in culture, without affecting cell viability or differentiation capacity. This "cell priming" technology has been used to address the issue of hypoxia-related central necrosis during in-vitro tissue engineering. Specifically, nanoconstructs of myoglobin, with enhanced oxygen-binding affinity, were synthesised and used to prime mesenchymal stem cells prior to hyaline cartilage engineering. The myoglobin-primed cells produced tissue constructs with a 62 % increase in type II : type I collagen ratio and, significantly, a reduction in cell necrosis from 42 ± 24 % to 7 ± 6 %.
6

Zhang, Xiao Xiao. „Identification of membrane-interacting proteins and membrane protein interactomes using Nanodiscs and proteomics“. Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The insoluble nature of membrane proteins has complicated the identification of their interactomes. The Nanodisc has allowed the membrane and membrane proteins to exist in a soluble state. In this thesis, we combined Nanodisc and proteomics and applied the technique to discover the interactome of membrane proteins. Using the SecYEG and MalFGK membrane complex incorporated into Nanodisc, we identified, Syd, SecA, and MalE. These interactions were identified with high specificity and confidence from total soluble protein extracts. The protein YidC was also tested but no interactors were detected. Overall, these results showed that the technique can identify periplasmic and cytosolic interacting partners with high degree of specificity. In a second approach, the method was applied to detect proteins with high affinity for lipid using S. cerevisiae as a model organism. Using Nanodiscs containing different types of phospholipids, many known lipid interactors were identified, including: Ypt1, Sec4, Vps21, Osh6, and Faa1. Interestingly, Caj1 was identified as a PA specific interactor and this interaction was found to be pH dependent. Liposome sedimentation assay showed that Caj1 has affinity for acidic phospholipids. In vivo analysis confirmed the plasma membrane localization of N’-GFP-Caj1 and specifically to the yeast buds. However, pH dependent localization was not observed. Together, with the in vivo and in vitro results suggests that Caj1 is an acidic phospholipid interacting protein.
7

Josyula, Ratnakar. „Structural studies of yeast mitochondrial peripheral membrane protein TIM44“. Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009p/josyula.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rapp, Mikaela. „The Ins and Outs of Membrane Proteins : Topology Studies of Bacterial Membrane Proteins“. Doctoral thesis, Stockholm : Department of Biochemistry and Biophysics, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1330.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Berger, Bryan William. „Protein-surfactant solution thermodynamics applications to integral membrane proteins /“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 15.42 Mb., 304 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3200533.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Keegan, Neil. „From engineered membrane proteins to self-assembling protein monolayers“. Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419991.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Membrane proteins":

1

Ghirlanda, Giovanna, und Alessandro Senes, Hrsg. Membrane Proteins. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-583-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Azzi, Angelo, Lanfranco Masotti und Arnaldo Vecli, Hrsg. Membrane Proteins. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Membrane Protein Symposium (1986 San Diego, Calif.). Membrane proteins: Proceedings of the Membrane Protein Symposium. [United States]: Bio-Rad Laboratories, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

H, White Stephen, Hrsg. Membrane protein structure: Experimental approaches. New York: Oxford University Press, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Graham, J. M. Membrane analysis. Oxford, UK: BIOS Scientific Publishers, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ghirlanda, Giovanna, und Alessandro Senes. Membrane proteins: Folding, association, and design. New York: Humana Press, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Anderluh, Gregor. Proteins: Membrane binding and pore formation. New York: Springer Science+Business Media, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

1940-, Hille Bertil, Fambrough Douglas M und Society of General Physiologists, Hrsg. Proteins of excitable membranes. New York: Society of General Physiologists and Wiley-Interscience, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

DeLucas, Larry. Membrane protein crystallization. Burlington, Mass: Academic Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Luckey, Mary. Membrane structural biology: With biochemical and biophysical foundations. Cambridge: Cambridge University Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Membrane proteins":

1

Broger, Clemens, Reinhard Bolli und Angelo Azzi. „Spin Labeling of Membranes and Membrane Proteins“. In Membrane Proteins, 136–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bolli, Reinhard, Clemens Broger und Angelo Azzi. „Purification of Cytochrome c Reductase and Oxidase by Affinity Chromatography“. In Membrane Proteins, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Spisni, A., G. Farruggia und L. Franzoni. „Polypeptide-Lipid Interactions as Studied by 13C NMR“. In Membrane Proteins, 86–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Masotti, L., J. Von Berger und N. Gesmundo. „Conformational Changes in Polypeptides and Proteins Brought About by Interactions with Lipids“. In Membrane Proteins, 95–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Müller, Michele, und Angelo Azzi. „Two Examples of Selective Fluorescent Labeling of SH-Groups with Eosin-5-Maleimide: The ADP/ATP Translocator and the Cytochrome c Oxidase Subunit III of Bovine Heart Mitochondria“. In Membrane Proteins, 109–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Montecucco, C. „Hydrophobic Photolabeling with 125I-TID of Red Blood Cell Membranes“. In Membrane Proteins, 119–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Brandolin, Gérard, Marc R. Block, François Boulay und Pierre V. Vignais. „Use of Fluorescent Probes of the Adenine Nucleotide Carrier for Binding Studies and Analysis of Conformational Changes“. In Membrane Proteins, 124–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nałȩcz, M. J., und A. Azzi. „Functional Reconstitution of the Mitochondrial Cytochrome b-c1 Complex: Effect of Cholesterol“. In Membrane Proteins, 151–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nałȩcz, M. J., A. Szewczyk und L. Wojtczak. „Changes of the Membrane Surface Potential Measured by Amphiphilic Fluorescent and ESR Probes“. In Membrane Proteins, 160–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Capitanio, N., und S. Papa. „Reconstitution of Cytochrome c Oxidase“. In Membrane Proteins, 168–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71543-3_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Membrane proteins":

1

Lapetina, Eduardo G., Bryan R. Reep und Luis Molina Y. Vedia. „NOVEL GTP-BINDING PROTEINS OF CYTOSOLIC AND MEMBRANE FRACTIONS OF HUMAN PLATELETS“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644629.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We have assessed the binding of (α-32P)GTP to platelet proteins from cytosolic and membrane fractions. Proteins were separated by SDS-PAGE and electrophoretically transferred to nitrocellulose. Incubation of the nitrocellulose blots with (α-32p)GTP indicated the presence of specific and distinct GTP-binding proteins in cytosol and membranes. Binding was prevented by 10-100 nM GTP or GTPyS and by 100 nM GDP; binding was unaffected by 1 nM-1 μM ATP. One main GTP-binding protein (29.5 KDa) was detected in the membrane fraction while three others (29, 27, and 21 KDa) were detected in the soluble fraction. Two cytosolic GTP-binding proteins (29 and 27 KDa) were degraded by trypsin; another cytosolic protein (21 KDa) and the membrane-bound protein (29.5 KDa) were resistant to the action of trypsin. Treatment of intact platelets with trypsin or thrombin, followed by lysis and fractionation, did not affect the binding of (α-32P)GTP to the membrane-bound protein. GTPyS still stimulates phospholipase C in permeabilized platelets already preincubated with trypsin. This suggests that trypsin-resistant GTP-binding proteins might regulate phospholipase C stimulated by GTPyS. We have started to purify the membrane-bound, trypsin-resistant, GTP-binding protein. Purification includes 1 M NaCl extraction and the use of an FPLC system with successive phenyl superose and superose 12 columns.
2

Maiti, Sudipta. „Plasmonics for Membrane Proteins?“ In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/photonics.2014.s3d.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Park, Jeong-Man. „Interactions between membrane proteins“. In Third tohwa university international conference on statistical physics. AIP, 2000. http://dx.doi.org/10.1063/1.1291595.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ghazikhani, Hamed, und Gregory Butler. „TooT-BERT-M: Discriminating Membrane Proteins from Non-Membrane Proteins using a BERT Representation of Protein Primary Sequences“. In 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2022. http://dx.doi.org/10.1109/cibcb55180.2022.9863026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Soares, T. A., T. P. Straatsma, Theodore E. Simos und George Maroulis. „Towards Simulations of Outer Membrane Proteins in Lipopolysaccharide Membranes“. In COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Theory and Computation: Old Problems and New Challenges. Lectures Presented at the International Conference on Computational Methods in Science and Engineering 2007 (ICCMSE 2007): VOLUME 1. AIP, 2007. http://dx.doi.org/10.1063/1.2836008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Golmohammadi, Seyed Koosha, Lukasz Kurgan, Brendan Crowley und Marek Reformat. „Classification of Cell Membrane Proteins“. In 2007 Frontiers in the Convergence of Bioscience and Information Technologies. IEEE, 2007. http://dx.doi.org/10.1109/fbit.2007.21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Faiz, Mehwish, Areej Ahmed und Sumaya Abid. „Discriminating plasma membrane, internal membrane, and organelle membrane proteins by SVM“. In 2021 4th International Conference on Computing & Information Sciences (ICCIS). IEEE, 2021. http://dx.doi.org/10.1109/iccis54243.2021.9676407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Creasy, M. Austin, und Donald J. Leo. „Modeling Bilayer Systems as Electrical Networks“. In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3791.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Bilayers are synthetically made cell membranes that are used to study cell membrane properties or make functional devices that use the properties of the cell membrane components. Lipids and proteins are two of the main components of a cell membrane. Lipids are amphiphilic molecules that can self assemble into organized structures in the presences of water and this self assembly property can be used to form bilayers. Because of the amphiphilic nature of the lipids, a bilayer is impermeable to ion flow. Proteins are the active structures of a cell membrane that opens pores through the membrane for ions and other molecules to pass. Proteins are made from amino acids and have varying properties that depend on its configuration. Some proteins are activated by reactions (chemical, thermal, etc) or gradients induced across the bilayer. One way of testing bilayers to find bilayer properties is to induce a potential gradient across a membrane that induces ion flow and this flow can be measured as an electrical current. But, these pores may be voltage gated or activated by some other stimuli and therefore cannot be modeled as a linear conductor. Usually the conductance of the protein is a nonlinear function of the input that activates the protein. A small system that consists of a single bilayer and protein with few changing components can be easily modeled, but as systems become larger with multiple bilayers, multiple variables, and multiple proteins, the models will become more complex. This paper looks at how to model a system of multiple bilayers and the peptide alamethicin. An analytical expression for this peptide is used to match experimental data and a short study on the sensitivity of the variables is performed.
9

Cuppoletti, John. „Composite Synthetic Membranes Containing Native and Engineered Transport Proteins“. In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-449.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Our membrane transport protein laboratory has worked with material scientists, computational chemists and electrical and mechanical engineers to design bioactuators and sensing devices. The group has demonstrated that it is possible to produce materials composed native and engineered biological transport proteins in a variety of synthetic porous and solid materials. Biological transport proteins found in nature include pumps, which use energy to produce gradients of solutes, ion channels, which dissipate ion gradients, and a variety of carriers which can either transport substances down gradients or couple the uphill movement of substances to the dissipation of gradients. More than one type of protein can be reconstituted into the membranes to allow coupling of processes such as forming concentration gradients with ion pumps and dissipating them with an ion channel. Similarly, ion pumps can provide ion gradients to allow the co-transport of another substance. These systems are relevant to bioactuation. An example of a bioactuator that has recently been developed in the laboratory was based on a sucrose-proton exchanger coupled to a proton pump driven by ATP. When coupled together, the net reaction across the synthetic membrane was ATP driven sucrose transport across a flexible membrane across a closed space. As sucrose was transported, net flow of water occurred, causing pressure and deformation of the membrane. Transporters are regulated in nature. These proteins are sensitive to voltage, pH, sensitivity to a large variety of ligands and they can be modified to gain or lose these responses. Examples of sensors include ligand gated ion channels reconstituted on solid and permeable supports. Such sensors have value as high throughput screening devices for drug screening. Other sensors that have been developed in the laboratory include sensors for membrane active bacterial products such as the anthrax pore protein. These materials can be self assembled or manufactured by simple techniques, allowing the components to be stored in a stable form for years before (self) assembly on demand. The components can be modified at the atomic level, and are composed of nanostructures. Ranges of sizes of structures using these components range from the microscopic to macroscopic scale. The transport proteins can be obtained from natural sources or can be produced by recombinant methods from the genomes of all kingdoms including archea, bacteria and eukaryotes. For example, the laboratory is currently studying an ion channel from a thermophile from deep sea vents which has a growth optimum of 90 degrees centigrade, and has membrane transport proteins with very high temperature stability. The transport proteins can also be genetically modified to produce new properties such as activation by different ligands or transport of new substances such as therapeutic agents. The structures of many of these proteins are known, allowing computational chemists to help understand and predict the transport processes and to guide the engineering of new properties for the transport proteins and the composite membranes. Supported by DARPA and USARMY MURI Award and AFOSR.
10

Caffrey, Martin. „Lipid Phase Behavior: Databases, Rational Design and Membrane Protein Crystallization“. In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The relationship that exists between structure and function is a unifying theme in my varied biomembrane-based research activities. It applies equally well to the lipid as to the protein component of membranes. With a view to exploiting information that has been and that is currently being generated in my laboratory, as well as that which exists in the literature, a number of web-accessible, relational databases have been established over the years. These include databases dealing with lipids, detergents and membrane proteins. Those catering to lipids include i) LIPIDAT, a database of thermodynamic information on lipid phases and phase transitions, ii) LIPIDAG, a database of phase diagrams concerning lipid miscibility, and iii) LMSD, a lipid molecular structures database. CMCD is the detergent-based database. It houses critical micelle concentration information on a wide assortment of surfactants under different conditions. The membrane protein data bank (MPDB) was established to provide convenient access to the 3-D structure and related properties of membrane proteins and peptides. The utility and current status of these assorted databases will be described and recommendations will be made for extending their range and usefulness.

Berichte der Organisationen zum Thema "Membrane proteins":

1

Woolf, Thomas B., Paul Stewart Crozier und Mark Jackson Stevens. Molecular dynamics of membrane proteins. Office of Scientific and Technical Information (OSTI), Oktober 2004. http://dx.doi.org/10.2172/919637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shirley, David Noyes, Thomas W. Hunt, W. Michael Brown, Joseph S. Schoeniger, Alexander Slepoy, Kenneth L. Sale, Malin M. Young, Jean-Loup Michel Faulon und Genetha Anne Gray. Model-building codes for membrane proteins. Office of Scientific and Technical Information (OSTI), Januar 2005. http://dx.doi.org/10.2172/920776.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Smith, H. G. Surface-Bound Membrane-Mimetic Assemblies: Electrostatic Attributes of Integral Membrane Proteins. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1988. http://dx.doi.org/10.21236/ada204381.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Smith, H. G. Surface-Bound Membrane-Mimetic Assemblies: Electrostatic Attributes of Integral Membrane Proteins. Fort Belvoir, VA: Defense Technical Information Center, Juni 1991. http://dx.doi.org/10.21236/ada237229.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Williams, Timothy J., Ramesh Balakrishnan, Brian K. Radak, James C. Phillips, Wei Jiang, Sunhwan Jo, Laxmikant V. Kale, Klaus Schulten und Benoit Roux. Free Energy Landscapes of Membrane Transport Proteins. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1483996.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Creutz, Carl E. Repair of Nerve Cell Membrance Damage by Calcium-Dependent, Membrane-Binding Proteins. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada596750.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Creutz, Carl E. Repair of Nerve Cell Membrane Damage by Calcium-Dependent, Membrane-Binding Proteins. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada560549.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Moczydlowski, Edward G. Intra-membrane molecular interactions of K+ channel proteins :. Office of Scientific and Technical Information (OSTI), Juli 2013. http://dx.doi.org/10.2172/1092995.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Schiffer, M., C. H. Chang und F. J. Stevens. The functions of tryptophan residues in membrane proteins. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10172497.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Theg, Steven. Targeting Maturation and Quality Control of Photosynthetic Membrane Proteins. Office of Scientific and Technical Information (OSTI), Juni 2018. http://dx.doi.org/10.2172/1457570.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie