Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Membrane lysosomale“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Membrane lysosomale" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Membrane lysosomale"
Li, Yuan, Baohui Chen, Wei Zou, Xin Wang, Yanwei Wu, Dongfeng Zhao, Yanan Sun et al. „The lysosomal membrane protein SCAV-3 maintains lysosome integrity and adult longevity“. Journal of Cell Biology 215, Nr. 2 (17.10.2016): 167–85. http://dx.doi.org/10.1083/jcb.201602090.
Der volle Inhalt der QuelleStark, Michal, Tomás F. D. Silva, Guy Levin, Miguel Machuqueiro und Yehuda G. Assaraf. „The Lysosomotropic Activity of Hydrophobic Weak Base Drugs is Mediated via Their Intercalation into the Lysosomal Membrane“. Cells 9, Nr. 5 (27.04.2020): 1082. http://dx.doi.org/10.3390/cells9051082.
Der volle Inhalt der QuelleMangalanathan, Malathi, Tamiloli Devendhiran, Saraswathi Uthamaramasamy, Keerthika Kumarasamy, K. Mohanraj, Kannagi Devendhiran, Saroj Adhikari und Mei –. Ching Lin. „Isolation and characterization of mitochondria and lysosome from isoproterenol induced cardiotoxic rats“. South Asian Journal of Engineering and Technology 8, Nr. 1 (08.02.2019): 12–18. http://dx.doi.org/10.26524/sajet190804.
Der volle Inhalt der QuelleBoonen, Marielle, Isabelle Hamer, Muriel Boussac, Anne-Françoise Delsaute, Bruno Flamion, Jérôme Garin und Michel Jadot. „Intracellular localization of p40, a protein identified in a preparation of lysosomal membranes“. Biochemical Journal 395, Nr. 1 (15.03.2006): 39–47. http://dx.doi.org/10.1042/bj20051647.
Der volle Inhalt der QuelleTang, Tuoxian, Boshuo Jian und Zhenjiang Liu. „Transmembrane Protein 175, a Lysosomal Ion Channel Related to Parkinson’s Disease“. Biomolecules 13, Nr. 5 (09.05.2023): 802. http://dx.doi.org/10.3390/biom13050802.
Der volle Inhalt der QuelleFeng, Xinghua, Zhuangzhuang Zhao, Qian Li und Zhiyong Tan. „Lysosomal Potassium Channels: Potential Roles in Lysosomal Function and Neurodegenerative Diseases“. CNS & Neurological Disorders - Drug Targets 17, Nr. 4 (06.07.2018): 261–66. http://dx.doi.org/10.2174/1871527317666180202110717.
Der volle Inhalt der QuelleIsraels, S. J., E. M. McMillan, C. Robertson, S. Singhroy und A. McNicol. „The Lysosomal Granule Membrane Protein, Lamp-2, Is also Present in Platelet Dense Granule Membranes“. Thrombosis and Haemostasis 75, Nr. 04 (1996): 623–29. http://dx.doi.org/10.1055/s-0038-1650333.
Der volle Inhalt der QuelleChen, J. W., T. L. Murphy, M. C. Willingham, I. Pastan und J. T. August. „Identification of two lysosomal membrane glycoproteins.“ Journal of Cell Biology 101, Nr. 1 (01.07.1985): 85–95. http://dx.doi.org/10.1083/jcb.101.1.85.
Der volle Inhalt der QuelleWang, Wuyang, Xiaoli Zhang, Qiong Gao, Maria Lawas, Lu Yu, Xiping Cheng, Mingxue Gu et al. „A voltage-dependent K+ channel in the lysosome is required for refilling lysosomal Ca2+ stores“. Journal of Cell Biology 216, Nr. 6 (03.05.2017): 1715–30. http://dx.doi.org/10.1083/jcb.201612123.
Der volle Inhalt der QuelleWilson, J. M., J. A. Whitney und M. R. Neutra. „Biogenesis of the apical endosome-lysosome complex during differentiation of absorptive epithelial cells in rat ileum“. Journal of Cell Science 100, Nr. 1 (01.09.1991): 133–43. http://dx.doi.org/10.1242/jcs.100.1.133.
Der volle Inhalt der QuelleDissertationen zum Thema "Membrane lysosomale"
Jamal, Layal. „Structural and functional characterization of the lysosomal amino acid transporter PQLC2“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL129.
Der volle Inhalt der QuellePQLC2, which stands for proline-glu- tamine loop repeat-containing protein 2, be- longs to a family of membrane transport pro- teins characterized by a seven-helix membrane topology and two proline-glutamine motifs. PQLC2 is localized in the lysosomal membrane of mammalian cells, and studies using recombi- nant PQLC2 expressed in Xenopus oocytes have demonstrated that PQLC2 is an uniporter that specifically transports cationic amino acids. However, its 3D atomic structure has not yet been determined. In addition to being a trans- porter, PQLC2 is also a membrane receptor. When the cell is deprived of cationic amino acids, PQLC2 recruits at the lysosome surface a complex of three proteins (called CSW): the GTPase-activating proteins C9ORF72 and SMCR8, and WDR41, the anchor between CSW and PQLC2. The CSW complex is important for normal lysosome function. In addition, congeni- tal mutations in the gene encoding C9ORF72 are directly associated with two neurodegene- rative diseases. Pull-down assays in cell extracts indicate that the interaction of a short 10 amino acid peptide motif from a protruding loop of WDR41 (WDR41-7CD loop) with PQLC2 is sufficient for lysosomal recruitment of CSW. To characterize this interaction as well as the functional role of PQLC2, we expressed mammalian PQLC2 in the yeast Saccharomyces cerevisiae, and established a purification protocol of PQLC2 based on the recognition between anti-GFP nanobodies and GFP fused to PQLC2. To improve the stability of detergent-purified PQLC2, we introduced speci- fic mutations along the protein sequence using a consensus-based mutagenesis approach. Ne- gative-staining electron microscopy of deter- gent-purified PQLC2 suggests that this trans- porter assembles as a homotrimer, like other members of the same PQ-loop family of trans- porters. Finally, by electron paramagnetic re- sonance (EPR) spectroscopy, we assessed the direct interaction between PQLC2 and a peptide encoding the WDR41 loop. These experiments revealed the role of certain WDR41 loop resi- dues in the PQLC2/WDR41-7CD loop interac- tion, as well as the effect of a PQLC2 substrate
SAMARANI, MAURA. „CELL DAMAGE INDUCED BY LYSOSOMAL IMPAIRMENT: STUDY OF THE ROLE OF PLASMA MEMBRANE SPHINGOLIPIDS“. Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/482301.
Der volle Inhalt der QuelleSchröder, Bernd. „Proteomanalyse der humanen lysosomalen Membran /“. Marburg : Görich & Weiershäuser, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016450683&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuelleJohansson, Ann-Charlotte. „Lysosomal membrane permeabilization : a cellular suicide strategy /“. Linköping : Department of Clinical and Experimental Medicine, Linköping University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11614.
Der volle Inhalt der QuelleJohansson, Ann-Charlotte. „Lysosomal Membrane Permeabilization : A Cellular Suicide Stragegy“. Doctoral thesis, Linköpings universitet, Experimentell patologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11614.
Der volle Inhalt der QuelleIn the last decade, a tremendous gain in knowledge concerning the molecular events of apoptosis signaling and execution has been achieved. The aim of this thesis was to clarify the role of lysosomal membrane permeabilization and lysosomal proteases, cathepsins, in signaling for apoptosis. We identified cathepsin D as an important factor in staurosporine-induced human fibroblast cell death. After release to the cytosol, cathepsin D promoted mitochondrial release of cytochrome c by proteolytic activation of Bid. Cathepsin D-mediated cleavage of Bid generated two fragments with the apparent molecular mass of 15 and 19 kDa. By sequence analysis, three cathepsin D-specific cleavage sites, Phe24, Trp48, and Phe183, were identified. Moreover, we investigated the mechanism by which cathepsins escape the lysosomal compartment, and found that Bax is translocated from the cytosol to lysosomes upon staurosporine treatment. In agreement with these data, recombinant Bax triggered release of cathepsins from isolated rat liver lysosomes. Conceivably, the Bcl-2 family of proteins may govern release of pro-apoptotic factors from both lysosomes and mitochondria. The importance of lysosomal cathepsins in apoptosis signaling was studied also in oral squamous cell carcinoma cells following exposure to the redox-cycling drug naphthazarin or agonistic anti-Fas antibodies. In this experimental system, cathepsins were released to the cytosol, however, inhibition of neither cathepsin D, nor cysteine cathepsin activity suppressed cell death. Interestingly, cysteine cathepsins still appeared to be involved in activation of the caspase cascade. Cathepsins are often overexpressed and secreted by cancer cells, and it has been reported that extracellular cathepsins promote tumor growth and metastasis. Here, we propose that cathepsin B secreted from cancer cells may suppress cancer cell death by shedding of the Fas death receptor. Defects in the regulation of apoptosis contribute to a wide variety of diseases, such as cancer, neurodegeneration and autoimmunity. Increased knowledge of the molecular details of apoptosis could lead to novel, more effective, treatments for these illnesses. This thesis emphasizes the importance of the lysosomal death pathway, which is a promising target for future therapeutic intervention.
Schneede, Alexander [Verfasser]. „Leben ohne LAMPs : die Folgen des Fehlens der lysosomal assoziierten Membran Proteine LAMP-1 und LAMP-2 auf endosomale, lysosomale Prozesse / Alexander Schneede“. Kiel : Universitätsbibliothek Kiel, 2009. http://d-nb.info/1019811161/34.
Der volle Inhalt der QuelleIveson, Graeme Paul. „Passive diffusion across the lysosome membrane“. Thesis, Keele University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315231.
Der volle Inhalt der QuelleAppelqvist, Hanna. „Lysosomal Membrande Stability and Cathepsins in Cell Death“. Doctoral thesis, Linköpings universitet, Experimentell patologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85008.
Der volle Inhalt der QuelleLachuer, Hugo. „Role of membrane tension in the spatial regulation of lysosomal exocytosis“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS026.
Der volle Inhalt der QuelleLysosomal exocytosis is involved in many key cellular processes but its spatio-temporal regulation is poorly known. Using total internal reflection fluorescence microscopy (TIRFM) and spatial statistics, we observed that lysosomal exocytosis is not random at the adhesive part of the plasma membrane of RPE1 cells but clustered at different scales. Although the rate of exocytosis is regulated by the actin cytoskeleton, neither interfering with actin or microtubule dynamics by drug treatments alters its spatial organization. Exocytosis events partially co-appear at focal adhesions (FAs) and their clustering is reduced upon removal of FAs. Changes in membrane tension following a hypo-osmotic shock or treatment with methyl-β-cyclodextrin was found to increase clustering. To investigate the link between FAs and membrane tension, cells were cultured on adhesive ring-shaped micropatterns, which allows to control the spatial organization of FAs. By using a combination of TIRFM and fluorescence lifetime imaging microscopy (FLIM), we revealed the existence of a radial gradient in membrane tension. By changing the diameter of micropatterned substrates, we further showed that this gradient as well as the extent of exocytosis clustering can be controlled. Together, our data indicate that the spatial clustering of lysosomal exocytosis relies on membrane tension patterning controlled by the spatial organization of FAs
Apfeldorfer, Coralie. „Lysosome biogenesis during osteoclastogenesis“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1164801444532-19433.
Der volle Inhalt der QuelleBücher zum Thema "Membrane lysosomale"
Johansson, Ann-Charlotte. Lysosomal membrane permeabilization: A cellular suicide strategy. Linköping: Department of Clinical and Experimental Medicine, Linköping University, 2008.
Den vollen Inhalt der Quelle findenA, Azzi, Drahota Z, Papa S, Unesco und International Biomedical Institute, Hrsg. Molecular basis of membrane-associated diseases. Berlin: Springer-Verlag, 1989.
Den vollen Inhalt der Quelle findenAzzi, Angelo, Sergio Papa und Zdenek Drahota. Molecular Basis of Membrane-Associated Diseases. Springer, 2011.
Den vollen Inhalt der Quelle findenAzzi, Angelo, Sergio Papa und Zdenek Drahota. Molecular Basis of Membrane-Associated Diseases. Springer London, Limited, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Membrane lysosomale"
Schwake, Michael, und Paul Saftig. „Lysosomal Membrane Defects“. In Lysosomal Storage Disorders, 131–36. Oxford: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118514672.ch17.
Der volle Inhalt der QuelleConinck, S. Wattiaux-De, M. M. Gonze, L. De Waele, F. Mainferme, P. Van Der Smissen, P. J. Courtoy, J. Thirion, J. J. Letesson und R. Wattiaux. „LGP10D10, a Lysosomal Membrane Protein“. In Endocytosis, 231–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84295-5_29.
Der volle Inhalt der QuelleFukuda, Minoru. „Biogenesis of the Lysosomal Membrane“. In Subcellular Biochemistry, 199–230. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2401-4_7.
Der volle Inhalt der QuelleErickson, Ann H., Gail F. Mclntyre, Gene D. Godbold und Richard L. Chapman. „A New Receptor for Lysosomal Proenzymes“. In Molecular Mechanisms of Membrane Traffic, 359–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02928-2_73.
Der volle Inhalt der QuelleHarikumar, P., und John P. Reeves. „The Lysosomal Proton Pump“. In New Insights into Cell and Membrane Transport Processes, 61–74. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5062-0_4.
Der volle Inhalt der QuelleWilliamson, Chad D., Carlos M. Guardia, Raffaella De Pace, Juan S. Bonifacino und Amra Saric. „Measurement of Lysosome Positioning by Shell Analysis and Line Scan“. In Membrane Trafficking, 285–306. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2209-4_19.
Der volle Inhalt der QuelleVerheijen, Frans W., und Grazia M. S. Mancini. „Lysosomal sialic acid transporter sialin (SLC17A5): sialic acid storage disease (SASD)“. In Membrane Transporter Diseases, 233–39. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9023-5_15.
Der volle Inhalt der QuelleBohley, Peter, Gabriele Adam, Werner Hoch und Jürgen Kopitz. „Lysosomal Proteolysis in Cultured Hepatocytes“. In Cells, Membranes, and Disease, Including Renal, 299–306. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-1283-3_31.
Der volle Inhalt der QuelleRepnik, Urška, und Boris Turk. „Lysosomal Membrane Permeabilization in Cell Death“. In Lysosomes: Biology, Diseases, and Therapeutics, 115–35. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118978320.ch8.
Der volle Inhalt der QuelleGiraldo, Ana Maria Vilamill, Karin Öllinger und Vesa Loitto. „Microscopic Analysis of Lysosomal Membrane Permeabilization“. In Methods in Molecular Biology, 73–92. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6934-0_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Membrane lysosomale"
Silva, Jordan Da, Celia Bienassis und Sebastien Paris. „1092 Induction of lysosomal membrane permeabilization by radiotherapy-activated NBTXR3 nanoparticles“. In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.1092.
Der volle Inhalt der QuelleDalzell, Danielle R., Caleb C. Roth, Joshua A. Bernhard, Jason A. Payne, Gerald J. Wilmink und Bennett L. Ibey. „Lysosomal exocytosis in response to subtle membrane damage following nanosecond pulse exposure“. In SPIE BiOS, herausgegeben von Thomas P. Ryan. SPIE, 2011. http://dx.doi.org/10.1117/12.874358.
Der volle Inhalt der QuelleMena, Salvador, Maria Rodriguez, Miguel Asensi, Jose M. Estrela und Angel Ortega. „Abstract 4219: Lysosomal membrane permeabilization, a novel anticancer mechanism induced by pterostilbene“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-4219.
Der volle Inhalt der QuelleWiedmer, Tabea, Rasmus M. Frank, Mario P. Tschan, Aurel Perren und Ilaria Marinoni. „Abstract 3159: Lysosomal membrane permeabilization as potential mediator of resistance in pancreatic neuroendocrine tumors“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3159.
Der volle Inhalt der QuellePurdon, A. D., und J. B. Smith. „ISOLATION OF A SOLUBLE PHOSPHOLIPASE A2 FROM HUMAN PLATELETS ACTIVE AGAINST 1-ACYL-2-ARACHIDONOYL GLYCEROPHOSPHOCHOLINE“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644628.
Der volle Inhalt der QuelleJia, Caixia, Jianmin Shi, Tao Han, Ping Cai, Alfred C. H. Yu und Peng Qin. „Lysosome Exocytosis Involved in the Resealing of the Perforated Membrane by Acoustic Cavitation“. In 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018. http://dx.doi.org/10.1109/ultsym.2018.8579659.
Der volle Inhalt der QuelleCircu, Magdalena, James Cardelli, Glenn Mills, Martin Barr und Hazem E. El-Osta. „Abstract 3511: Chloroquine-induced lysosomal membrane permeabilization restores sensitivity to cisplatin in refractory lung cancer cells“. In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3511.
Der volle Inhalt der QuelleAlvi, Mohammed, Rachel Nicoletto, Bayan A. Eshmawi und Clyde M. Ofner. „Abstract 2091: Lysosomal targeting of doxorubicin induces different membrane permeabilization and cytotoxicity in two breast cancer cell lines“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-2091.
Der volle Inhalt der QuelleAlvi, Mohammed, Rachel Nicoletto, Bayan A. Eshmawi und Clyde M. Ofner. „Abstract 2091: Lysosomal targeting of doxorubicin induces different membrane permeabilization and cytotoxicity in two breast cancer cell lines“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-2091.
Der volle Inhalt der QuelleThirusangu, Prabhu, Christopher L. Pathoulas, Upasana Ray, Yinan xiao, Julie Staub, Ashwani Khurana und Vijayalakshmi Shridhar. „Abstract 1937: Quinacrine-induced autophagy in ovarian cancer triggers cathepsin-L mediated lysosomal/mitochondrial membrane permeabilization and cell death“. In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-1937.
Der volle Inhalt der Quelle