Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Membrane-Bound TGF-Β“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Membrane-Bound TGF-Β" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Membrane-Bound TGF-Β"
Elderbroom, Jennifer L., Jennifer J. Huang, Catherine E. Gatza, Jian Chen, Tam How, Mark Starr, Andrew B. Nixon und Gerard C. Blobe. „Ectodomain shedding of TβRIII is required for TβRIII-mediated suppression of TGF-β signaling and breast cancer migration and invasion“. Molecular Biology of the Cell 25, Nr. 16 (15.08.2014): 2320–32. http://dx.doi.org/10.1091/mbc.e13-09-0524.
Der volle Inhalt der QuelleKim, Pyeung-Hyeun, Young-Saeng Jang, Ha-Eon Song, Goo-Young Seo, Seung-Goo Kang, Jeong Hyun Lee, Bo-Eun Kwon und Hyun-Jeong Ko. „Mechanism underlying the induction of Foxp3+ regulatory T cells by lactoferrin“. Journal of Immunology 200, Nr. 1_Supplement (01.05.2018): 47.16. http://dx.doi.org/10.4049/jimmunol.200.supp.47.16.
Der volle Inhalt der QuelleYan, Xiaohua, und Ye-Guang Chen. „Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling“. Biochemical Journal 434, Nr. 1 (27.01.2011): 1–10. http://dx.doi.org/10.1042/bj20101827.
Der volle Inhalt der QuelleKim, Sun Kyung, Morkos A. Henen und Andrew P. Hinck. „Structural biology of betaglycan and endoglin, membrane-bound co-receptors of the TGF-beta family“. Experimental Biology and Medicine 244, Nr. 17 (10.10.2019): 1547–58. http://dx.doi.org/10.1177/1535370219881160.
Der volle Inhalt der QuelleSisto, Margherita, Domenico Ribatti und Sabrina Lisi. „SMADS-Mediate Molecular Mechanisms in Sjögren’s Syndrome“. International Journal of Molecular Sciences 22, Nr. 6 (21.03.2021): 3203. http://dx.doi.org/10.3390/ijms22063203.
Der volle Inhalt der QuelleWeber, Florian, Oliver Treeck, Patricia Mester und Christa Buechler. „Expression and Function of BMP and Activin Membrane-Bound Inhibitor (BAMBI) in Chronic Liver Diseases and Hepatocellular Carcinoma“. International Journal of Molecular Sciences 24, Nr. 4 (09.02.2023): 3473. http://dx.doi.org/10.3390/ijms24043473.
Der volle Inhalt der QuelleGallardo-Vara, Ruiz-Llorente, Casado-Vela, Ruiz-Rodríguez, López-Andrés, Pattnaik, Quintanilla und Bernabeu. „Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners“. Cells 8, Nr. 9 (13.09.2019): 1082. http://dx.doi.org/10.3390/cells8091082.
Der volle Inhalt der QuelleDhandapani, Krishnan M., F. Marlene Wade, Virendra B. Mahesh und Darrell W. Brann. „Astrocyte-Derived Transforming Growth Factor-β Mediates the Neuroprotective Effects of 17β-Estradiol: Involvement of Nonclassical Genomic Signaling Pathways“. Endocrinology 146, Nr. 6 (01.06.2005): 2749–59. http://dx.doi.org/10.1210/en.2005-0014.
Der volle Inhalt der QuelleJang, Young-Saeng, Ha-Eon Song, Goo-Young Seo, Hyeon-Ju Jo, Sunhee Park, Hui-Won Park, Tae-Gyu Kim et al. „Lactoferrin Potentiates Inducible Regulatory T Cell Differentiation through TGF-β Receptor III Binding and Activation of Membrane-Bound TGF-β“. Journal of Immunology 207, Nr. 10 (06.10.2021): 2456–64. http://dx.doi.org/10.4049/jimmunol.2100326.
Der volle Inhalt der QuelleZhu, Qingwei, Yong Hwan Kim, Douglas Wang, S. Paul Oh und Kunxin Luo. „SnoN facilitates ALK1–Smad1/5 signaling during embryonic angiogenesis“. Journal of Cell Biology 202, Nr. 6 (09.09.2013): 937–50. http://dx.doi.org/10.1083/jcb.201208113.
Der volle Inhalt der QuelleDissertationen zum Thema "Membrane-Bound TGF-Β"
Wnent, Dorothee Anna [Verfasser], Daniel [Akademischer Betreuer] Drömann und Guido [Akademischer Betreuer] Stichtenoth. „Pulmonales Geweberemodeling und Reparaturmechanismen im TGF-β Pseudorezeptor BMP and activin membrane bound inhibitor Knockout Modell nach ex vivo Infektion mit Nontypeable Haemophilus influenzae / Dorothee Anna Wnent ; Akademische Betreuer: Daniel Drömann, Guido Stichtenoth“. Lübeck : Zentrale Hochschulbibliothek Lübeck, 2021. http://d-nb.info/1232284416/34.
Der volle Inhalt der QuelleBoyer, Thomas. „Impact des cellules myéloïdes immunosuppressives dans l’induction de cellules souches cancéreuses“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0221.
Der volle Inhalt der QuelleThe tumor microenvironment is strongly influenced by myeloid cells, with macrophages, neutrophils, and monocytes being major representatives. Research over the past decades has shown that almost all tumors are infiltrated in myeloid cells, making it impossible for “cold” tumors to exist with respect to these cells. Moreover, results from numerous clinical studies focusing on the myeloid immune compartment clearly show that these cells are almost universally associated with poor clinical outcome in patients, motivating a better understanding of their biology and efforts to target them. However, a central question has long been to understand what determines the functions of these cells in cancer.During emergency myelopoiesis, pathological activation of myeloid progenitors gives rise to myeloid-derived suppressor cells (MDSC), a term that encompasses a group of immature cells with a common property: immunosuppression. Indeed, MDSC play a crucial role in regulating antitumor immune responses but also promote tumor progression through non-immunological mechanisms, such as influencing angiogenesis and the extracellular matrix, resistance to therapies, and the preparation of the pre-metastatic niche.The preparation of the pre-metastatic niche is essential for the emergence of metastases at distant sites from the primary tumor, the leading cause of cancer-related deaths. These metastases are initiated by a subpopulation of tumor cells with stem-like properties: cancer stem cells (CSC). These cells, also known as Tumor-Initiating cells (TIC), encompass a minor subpopulation within the tumor and are characterized by intrinsic properties such as self-renewal potential, asymmetric division, and the ability to induce a new, heterogeneous tumor. Highly plastic, CSC transition from one cellules state to another through the epithelial-to-mesenchymal transition (EMT) or its counterpart, the mesenchymal-to-epithelial transition (MET). Therefore, a better understanding and specific treatment strategies targeting CSC could transform clinical management and significantly improve patient survival rates.The complexity of the tumor microenvironment, reflected by the presence of numerous actors and their interactions, exerts strong selective pressure on cancer cells and provides a favorable environment for the growth of CSC. Furthermore, the clinical implications associated with the issues of MDSC and CSC drive the emergence of studies on their reciprocal interactions, but the limitations in detecting these two actors make the evaluation and understanding of their interaction mechanisms diffuse and incomplete.In this thesis, we studied the role of suppressive myeloid cells in the induction of cancer cells with stemness properties. We have shown Human Monocyte Derived Suppressive Cells (HuMoSC) generated in vitro, but also their murine and patient derived equivalent promoted the apparition of CSC. Our results have highlighted a stemness induction mediated through a direct cell-to-cell contact and involving membrane-bound TGF-β. Finally, transcriptomic study of myeloid and cancer cells allowed us to identify a subpopulation of myeloid cells, expressing the glycoprotein CD52, as responsible for the immunosuppressive properties and the plasticity of CSC towards a mesenchymal-like phenotype