Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Membership Inference“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Membership Inference" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Membership Inference"
Pedersen, Joseph, Rafael Muñoz-Gómez, Jiangnan Huang, Haozhe Sun, Wei-Wei Tu und Isabelle Guyon. „LTU Attacker for Membership Inference“. Algorithms 15, Nr. 7 (20.07.2022): 254. http://dx.doi.org/10.3390/a15070254.
Der volle Inhalt der QuelleZhao, Yanchao, Jiale Chen, Jiale Zhang, Zilu Yang, Huawei Tu, Hao Han, Kun Zhu und Bing Chen. „User-Level Membership Inference for Federated Learning in Wireless Network Environment“. Wireless Communications and Mobile Computing 2021 (19.10.2021): 1–17. http://dx.doi.org/10.1155/2021/5534270.
Der volle Inhalt der QuelleHilprecht, Benjamin, Martin Härterich und Daniel Bernau. „Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models“. Proceedings on Privacy Enhancing Technologies 2019, Nr. 4 (01.10.2019): 232–49. http://dx.doi.org/10.2478/popets-2019-0067.
Der volle Inhalt der QuelleBu, Diyue, Xiaofeng Wang und Haixu Tang. „Haplotype-based membership inference from summary genomic data“. Bioinformatics 37, Supplement_1 (01.07.2021): i161—i168. http://dx.doi.org/10.1093/bioinformatics/btab305.
Der volle Inhalt der QuelleYang, Ziqi, Lijin Wang, Da Yang, Jie Wan, Ziming Zhao, Ee-Chien Chang, Fan Zhang und Kui Ren. „Purifier: Defending Data Inference Attacks via Transforming Confidence Scores“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 9 (26.06.2023): 10871–79. http://dx.doi.org/10.1609/aaai.v37i9.26289.
Der volle Inhalt der QuelleWang, Xiuling, und Wendy Hui Wang. „GCL-Leak: Link Membership Inference Attacks against Graph Contrastive Learning“. Proceedings on Privacy Enhancing Technologies 2024, Nr. 3 (Juli 2024): 165–85. http://dx.doi.org/10.56553/popets-2024-0073.
Der volle Inhalt der QuelleJayaraman, Bargav, Lingxiao Wang, Katherine Knipmeyer, Quanquan Gu und David Evans. „Revisiting Membership Inference Under Realistic Assumptions“. Proceedings on Privacy Enhancing Technologies 2021, Nr. 2 (29.01.2021): 348–68. http://dx.doi.org/10.2478/popets-2021-0031.
Der volle Inhalt der QuelleKulynych, Bogdan, Mohammad Yaghini, Giovanni Cherubin, Michael Veale und Carmela Troncoso. „Disparate Vulnerability to Membership Inference Attacks“. Proceedings on Privacy Enhancing Technologies 2022, Nr. 1 (20.11.2021): 460–80. http://dx.doi.org/10.2478/popets-2022-0023.
Der volle Inhalt der QuelleTejash Umedbhai Chaudhari, Krunal Balubhai Patel und Vimal Bhikhubhai Patel. „A study of generalized bell-shaped membership function on Mamdani fuzzy inference system for Students’ Performance Evaluation“. World Journal of Advanced Research and Reviews 3, Nr. 2 (30.08.2019): 083–90. http://dx.doi.org/10.30574/wjarr.2019.3.2.0046.
Der volle Inhalt der QuelleXia, Fan, Yuhao Liu, Bo Jin, Zheng Yu, Xingwei Cai, Hao Li, Zhiyong Zha, Dai Hou und Kai Peng. „Leveraging Multiple Adversarial Perturbation Distances for Enhanced Membership Inference Attack in Federated Learning“. Symmetry 16, Nr. 12 (18.12.2024): 1677. https://doi.org/10.3390/sym16121677.
Der volle Inhalt der QuelleDissertationen zum Thema "Membership Inference"
Zens, Gregor. „Bayesian shrinkage in mixture-of-experts models: identifying robust determinants of class membership“. Springer, 2019. http://dx.doi.org/10.1007/s11634-019-00353-y.
Der volle Inhalt der QuelleUllah, Noor. „ANFIS BASED MODELS FOR ACCESSING QUALITY OF WIKIPEDIA ARTICLES“. Thesis, Högskolan Dalarna, Datateknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:du-4909.
Der volle Inhalt der QuelleZegzulka, Ivo. „Aplikace fuzzy logiky při hodnocení dodavatelů firmy“. Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2014. http://www.nusl.cz/ntk/nusl-224446.
Der volle Inhalt der QuelleShah, Raza. „Property inference decision-making and decision switching of undergraduate engineers : implications for ideational diversity & fluency through movements in a Cartesian concept design space“. Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/278700.
Der volle Inhalt der QuelleSpacca, Jordy Luiz Cerminaro. „Usando o Sistema de Inferência Neuro Fuzzy - ANFIS para o cálculo da cinemática inversa de um manipulador de 5 DOF /“. Ilha Solteira, 2019. http://hdl.handle.net/11449/183448.
Der volle Inhalt der QuelleResumo: No estudo dos manipuladores são utilizados os conceitos da cinemática direta e a inversa. No cálculo da cinemática direta tem-se a facilidade da notação de Denavit-Hartenberg, mas o desafio maior é a resolução da cinemática inversa, que se torna mais complexa conforme aumentam os graus de liberdade do manipulador, além de apresentar múltiplas soluções. As variáveis angulares obtidas pelas equações da cinemática inversa são utilizadas pelo controlador, para posicionar o órgão terminal do manipulador em um ponto específico de seu volume de trabalho. Na busca de alternativas para contornar estes problemas, neste trabalho utilizam-se os Modelos Adaptativos de Inferência Neuro-Fuzzy - ANFIS para a resolução da cinemática inversa, por meio de simulações, para obter o posicionamento de um manipulador robótico de 5 graus de liberdade, composto por sete servomotores controlados pela plataforma de desenvolvimento Intel® Galileo Gen 2, usado como caso de estudo. Nas simulações usamse ANFIS com uma arquitetura com três e quatro funções de pertinência de entrada, do tipo gaussiana. O desempenho da arquitetura da ANFIS implementada foi comparado com uma Rede Perceptron Multicamadas, demonstrando com os resultados favoráveis a ANFIS, a sua capacidade de aprender e resolver com baixo erro quadrático médio e com precisão, a cinemática inversa para o manipulador em estudo. Verifica-se também, que a performance das ANFIS melhora, quanto à precisão dos resultados, demonstrado pelo desvio médio d... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: In the study of manipulator’s, the concepts of direct and inverse kinematics are used. In the computation of forward kinematics, it has of the ease of Denavit-Hartenberg notation, but the biggest challenge is the resolution of the inverse kinematics, which becomes more complex as the manipulator's degrees of freedom increase, besides presenting multiple solutions. The angular variables obtained by the inverse kinematics equations are used by the controller to position the terminal organ of the manipulator at a specific point in its work volume. In the search for alternatives to overcome these problems, in this work, the Adaptive Neuro-Fuzzy Inference Models (ANFIS) are used to solve the inverse kinematics, by means of simulations, to obtain the positioning of a robot manipulator of 5 degrees of freedom, consisting of seven servomotors controlled by the Intel® Galileo Gen 2 development platform, used as a case's study . In the simulations ANFIS's architecture are used three and four Gaussian membership functions of input. The performance of the implemented ANFIS architecture was compared to a Multi-layered Perceptron Network, demonstrating with the favorable results the ANFIS, its ability to learn and solve with low mean square error and with precision, the inverse kinematics for the manipulator under study. It is also verified that the performance of the ANFIS improves, as regards the accuracy of the results in the training process, , demonstrated by the mean deviation of the... (Complete abstract click electronic access below)
Mestre
Kim, Hyowon. „Improving Inferences about Preferences in Choice Modeling“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587524882296023.
Der volle Inhalt der QuelleAzize, Achraf. „Privacy-Utility Trade-offs in Sequential Decision-Making under Uncertainty“. Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILB029.
Der volle Inhalt der QuelleThe topics addressed in this thesis aim to characterise the privacy-utility trade-offs in sequential decision-making under uncertainty. The main privacy framework adopted is Differential Privacy (DP), and the main setting for studying utility is the stochastic Multi-Armed Bandit (MAB) problem. First, we propose different definitions that extend DP to the setting of multi-armed bandits. Then, we quantify the hardness of private bandits by proving lower bounds on the performance of bandit algorithms verifying the DP constraint. These bounds suggest the existence of two hardness regimes depending on the privacy budget and the reward distributions. We further propose a generic blueprint to design near-optimal DP extensions of bandit algorithms. We instantiate the blueprint to design DP versions of different bandit algorithms under different settings: finite-armed, linear and contextual bandits under regret as a utility measure, and finite-armed bandits under sample complexity of identifying the optimal arm as a utility measure. The theoretical and experimental analysis of the proposed algorithms furthermore validates the existence of two hardness regimes depending on the privacy budget.In the second part of this thesis, we shift the view from privacy defences to attacks. Specifically, we study fixed-target Membership Inference (MI) attacks, where an adversary aims to infer whether a fixed target point was included or not in the input dataset of an algorithm. We define the target-dependent leakage of a datapoint as the advantage of the optimal adversary trying to infer the membership of that datapoint. Then, we quantify both the target-dependent leakage and the trade-off functions for the empirical mean and variants of interest in terms of the Mahalanobis distance between the target point and the data-generating distribution. Our asymptotic analysis builds on a novel proof technique that combines an Edgeworth expansion of the Likelihood Ratio (LR) test and a Lindeberg-Feller central limit theorem. Our analysis shows that the LR test for the empirical mean is a scalar product attack but corrected for the geometry of the data using the inverse of the covariance matrix. Finally, as by-products of our analysis, we propose a new covariance score and a new canary selection strategy for auditing gradient descent algorithms in the white-box federated learning setting
Lee, Sheau Chuen, und 李曉春. „The Design of a Fast Inference and Symmetric Membership Function Based Fuzzy Chip“. Thesis, 1996. http://ndltd.ncl.edu.tw/handle/24997616625348102706.
Der volle Inhalt der QuelleAlharbi, Basma Mohammed. „Latent Feature Models for Uncovering Human Mobility Patterns from Anonymized User Location Traces with Metadata“. Diss., 2017. http://hdl.handle.net/10754/623122.
Der volle Inhalt der QuelleFernandes, Flávio Duarte Pacheco. „LHView: Location Aware Hybrid Partial View“. Master's thesis, 2017. http://hdl.handle.net/10362/66268.
Der volle Inhalt der QuelleBuchteile zum Thema "Membership Inference"
Xu, Tianxiang, Chang Liu, Kun Zhang und Jianlin Zhang. „Membership Inference Attacks Against Medical Databases“. In Communications in Computer and Information Science, 15–25. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8138-0_2.
Der volle Inhalt der QuelleMonreale, Anna, Francesca Naretto und Simone Rizzo. „Agnostic Label-Only Membership Inference Attack“. In Network and System Security, 249–64. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39828-5_14.
Der volle Inhalt der QuelleHa, Trung, Trang Vo, Tran Khanh Dang und Nguyen Thi Huyen Trang. „Differential Privacy Under Membership Inference Attacks“. In Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications, 255–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8296-7_18.
Der volle Inhalt der QuelleBarezzani, Sergio. „Membership Inference Attacks in Machine Learning“. In Encyclopedia of Cryptography, Security and Privacy, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-642-27739-9_1825-1.
Der volle Inhalt der QuelleGoto, Yumeki, Nami Ashizawa, Toshiki Shibahara und Naoto Yanai. „Do Backdoors Assist Membership Inference Attacks?“ In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 251–65. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64954-7_13.
Der volle Inhalt der QuelleBarezzani, Sergio. „Membership Inference Attacks in Machine Learning“. In Encyclopedia of Cryptography, Security and Privacy, 1520–23. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-030-71522-9_1825.
Der volle Inhalt der QuelleZari, Oualid, Javier Parra-Arnau, Ayşe Ünsal, Thorsten Strufe und Melek Önen. „Membership Inference Attack Against Principal Component Analysis“. In Privacy in Statistical Databases, 269–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13945-1_19.
Der volle Inhalt der QuelleSenavirathne, Navoda, und Vicenç Torra. „Dissecting Membership Inference Risk in Machine Learning“. In Cyberspace Safety and Security, 36–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94029-4_3.
Der volle Inhalt der QuelleChen, Shi, und Yubin Zhong. „Two-Stage High Precision Membership Inference Attack“. In Machine Learning for Cyber Security, 521–35. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20099-1_44.
Der volle Inhalt der QuelleYan, Ran, Ruiying Du, Kun He und Jing Chen. „Efficient Adversarial Training with Membership Inference Resistance“. In Pattern Recognition and Computer Vision, 474–86. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8429-9_38.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Membership Inference"
Lou, Jiadong, und Xu Yuan. „Membership Inference via Self-Comparison“. In 2024 IEEE Conference on Communications and Network Security (CNS), 1–9. IEEE, 2024. http://dx.doi.org/10.1109/cns62487.2024.10735627.
Der volle Inhalt der QuelleYichuan, Shi, Olivera Kotevska, Viktor Reshniak und Amir Sadovnik. „Assessing Membership Inference Attacks under Distribution Shifts“. In 2024 IEEE International Conference on Big Data (BigData), 4127–31. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825580.
Der volle Inhalt der QuelleGalli, Filippo, Luca Melis und Tommaso Cucinotta. „Noisy Neighbors: Efficient membership inference attacks against LLMs“. In Proceedings of the Fifth Workshop on Privacy in Natural Language Processing, 1–6. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.privatenlp-1.1.
Der volle Inhalt der QuelleLejbølle Jelstrup, Malthe Andreas, und Siavash Arjomand Bigdeli. „Deepmarking: Leveraging Adversarial Noise for Membership Inference Attacks“. In 2024 IEEE International Conference on Computational Photography (ICCP), 1–10. IEEE, 2024. http://dx.doi.org/10.1109/iccp61108.2024.10644615.
Der volle Inhalt der QuelleDeAlcala, Daniel, Gonzalo Mancera, Aythami Morales, Julian Fierrez, Ruben Tolosana und Javier Ortega-Garcia. „A Comprehensive Analysis of Factors Impacting Membership Inference“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 3585–93. IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00362.
Der volle Inhalt der QuelleZhang, Rongting, Martin Andres Bertran und Aaron Roth. „Order of Magnitude Speedups for LLM Membership Inference“. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 4431–43. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-main.253.
Der volle Inhalt der QuelleXie, Roy, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Zhenqiang Gong und Bhuwan Dhingra. „ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods“. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 8671–89. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-main.493.
Der volle Inhalt der QuelleShi, Haonan, Tu Ouyang und An Wang. „Learning-Based Difficulty Calibration for Enhanced Membership Inference Attacks“. In 2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P), 62–77. IEEE, 2024. http://dx.doi.org/10.1109/eurosp60621.2024.00012.
Der volle Inhalt der QuelleShah, Akash, Sapna Varshney und Monica Mehrotra. „DepInferAttack: Framework for Membership Inference Attack in Depression Dataset“. In 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS), 1326–32. IEEE, 2024. https://doi.org/10.1109/ictacs62700.2024.10840770.
Der volle Inhalt der QuelleDixit, Neil. „Quantifying Classification Metrics in Black Box Membership Inference Attacks“. In 2025 IEEE 4th International Conference on AI in Cybersecurity (ICAIC), 1–6. IEEE, 2025. https://doi.org/10.1109/icaic63015.2025.10848684.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Membership Inference"
Tsidylo, Ivan M., Serhiy O. Semerikov, Tetiana I. Gargula, Hanna V. Solonetska, Yaroslav P. Zamora und Andrey V. Pikilnyak. Simulation of intellectual system for evaluation of multilevel test tasks on the basis of fuzzy logic. CEUR Workshop Proceedings, Juni 2021. http://dx.doi.org/10.31812/123456789/4370.
Der volle Inhalt der QuellePaule, Bernard, Flourentzos Flourentzou, Tristan de KERCHOVE d’EXAERDE, Julien BOUTILLIER und Nicolo Ferrari. PRELUDE Roadmap for Building Renovation: set of rules for renovation actions to optimize building energy performance. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541614638.
Der volle Inhalt der Quelle