Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „MELTING CHARGE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "MELTING CHARGE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "MELTING CHARGE"
Yamada, Ikuya, Hidenobu Etani, Makoto Murakami, Naoaki Hayashi, Takateru Kawakami, Masaichiro Mizumaki, Shigenori Ueda et al. „Charge-Order Melting in Charge-Disproportionated Perovskite CeCu3Fe4O12“. Inorganic Chemistry 53, Nr. 21 (21.10.2014): 11794–801. http://dx.doi.org/10.1021/ic502138v.
Der volle Inhalt der QuelleVasiliu-Doloc, L., S. Rosenkranz, R. Osborn, S. K. Sinha, J. W. Lynn, J. Mesot, O. H. Seeck, G. Preosti, A. J. Fedro und J. F. Mitchell. „Charge Melting and Polaron Collapse inLa1.2Sr1.8Mn2O7“. Physical Review Letters 83, Nr. 21 (22.11.1999): 4393–96. http://dx.doi.org/10.1103/physrevlett.83.4393.
Der volle Inhalt der QuelleCohen, Joel, und Andrew Ford. „Charge Melting of Liposome Colloidal Crystals“. Biophysical Journal 116, Nr. 3 (Februar 2019): 507a. http://dx.doi.org/10.1016/j.bpj.2018.11.2738.
Der volle Inhalt der QuelleKobayashi, Hisao, Yutaka Kazekami, Nobuhiko Sakai, Yasuo Ohishi, Makoto Shirakawa und Aakira Ochiai. „Pressure-induced melting of charge order in Eu4As3without structural change“. Journal of Physics: Condensed Matter 20, Nr. 41 (18.09.2008): 415217. http://dx.doi.org/10.1088/0953-8984/20/41/415217.
Der volle Inhalt der QuelleYamada, Ikuya, und et al et al. „ChemInform Abstract: Charge-Order Melting in Charge-Disproportionated Perovskite CeCu3Fe4O12.“ ChemInform 46, Nr. 2 (19.12.2014): no. http://dx.doi.org/10.1002/chin.201502017.
Der volle Inhalt der QuelleGuloyan, Yu A., K. S. Katkova, T. I. Balandina und A. G. Belyaeva. „Charge redox characteristics and container-glass melting“. Glass and Ceramics 47, Nr. 11 (November 1990): 415–18. http://dx.doi.org/10.1007/bf00677522.
Der volle Inhalt der QuelleRapacioli, Mathias, Nathalie Tarrat und Fernand Spiegelman. „Melting of the Au20Gold Cluster: Does Charge Matter?“ Journal of Physical Chemistry A 122, Nr. 16 (23.03.2018): 4092–98. http://dx.doi.org/10.1021/acs.jpca.7b12522.
Der volle Inhalt der QuelleMakarov, A. N., M. K. Galicheva und A. V. Kuznetsov. „Changing the Arc Efficiency during Melting of a Charge in Arc Steel Melting Furnaces“. Materials Science Forum 870 (September 2016): 441–45. http://dx.doi.org/10.4028/www.scientific.net/msf.870.441.
Der volle Inhalt der QuelleSigarev, E., Y. Lobanov, S. Semiryagin und A. Pohvalitiy. „MODELING THE MELTING OF SCRAP METAL OF DIFFERENT DENSITY IN A BOF SMELTING“. Collection of scholarly papers of Dniprovsk State Technical University (Technical Sciences) 2, Nr. 37 (23.04.2021): 3–8. http://dx.doi.org/10.31319/2519-2884.37.2020.1.
Der volle Inhalt der QuelleLan, X. K., J. M. Khodadadi, P. D. Jones und L. Wang. „Numerical Study of Melting of Large-Diameter Crystals Using an Orbital Solar Concentrator“. Journal of Solar Energy Engineering 117, Nr. 2 (01.05.1995): 67–74. http://dx.doi.org/10.1115/1.2870868.
Der volle Inhalt der QuelleDissertationen zum Thema "MELTING CHARGE"
Chavez, Cervantes Mariana [Verfasser], und Isabella [Akademischer Betreuer] Gierz. „Photo-Carrier Dynamics and Photo-Induced Melting of Charge Density Waves in Indium Wires / Mariana Chavez Cervantes ; Betreuer: Isabella Gierz“. Hamburg : Staats- und Universitätsbibliothek Hamburg, 2020. http://d-nb.info/1212585143/34.
Der volle Inhalt der QuelleNduwimana, Alexis. „Confinement effect on semiconductor nanowires properties“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19865.
Der volle Inhalt der QuelleCommittee Chair: Chou, Mei-Yin; Committee Member: First,Phillip; Committee Member: Gao, Jianping; Committee Member: Landman, Uzi; Committee Member: wang, Xiao-Qian.
Khillarkar, Dipendra B. „Melting of a phase change material in horizontal annuli“. Thesis, McGill University, 1998. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21307.
Der volle Inhalt der QuelleTo enhance the heat transfer rate during melting in horizontal annular containers various innovative passive methods were examined. Eccentric annular configurations are identified as superior to concentric tubular geometries due to the vertically upward orientation of the buoyancy force in the melt phase at higher Rayleigh numbers. In addition to this the effect of flipping the container at pre-selected times after initiation of melting as a measure to increase the heat transfer rate during the last stage of the melting process is also examined and discussed.
Khillarkar, Dipendra B. „Melting of a phase change material in horizontal annuli“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0025/MQ50629.pdf.
Der volle Inhalt der QuelleGong, Zhen-Xiang. „Time-dependent melting and freezing heat transfer in multiple phase change materials“. Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42043.
Der volle Inhalt der QuelleA multi-layer phase change material (PCM) heat transfer module is proposed for latent heat energy storage. Cyclic heat transfer in the module was modelled using the finite element technique. A parametric study was performed to investigate the energy charge/discharge rates for the new design.
A second-law thermodynamic analysis was carried out for thermal energy storage using multiple PCMs. The exergy efficiency of energy storage units using two, three as well as five different PCMs was analyzed and compared with that using a single PCM.
A novel cone-cylinder design configuration is proposed for a shell-and-tube latent heat energy storage exchanger. A finite element model was developed to simulate the coupled convection and cyclic melting/freezing phase change heat transfer occurring outside the tube. The advantages of the new configuration are examined and discussed with the help of numerical experiments. Following the new design configuration a novel multi-exchanger energy storage system is proposed. Finite element simulation results validated and extended the thermodynamic analytical results.
A new solar thermal storage unit using multiple PCMs was proposed and analyzed by a finite element model. A parametric study was carried out to investigate the advantages of the new design when compared with conventional single PCM designs.
Finally, a finite element model for melting and freezing heat transfer including free convection in the melt region was developed. The streamline upwind/Petrov-Galerkin method was employed to enhance both the stability and accuracy of the numerical solution. Using this finite element model simulations were carried out for melting of a PCM in a rectangular cavity heated from below. Flow patterns and local heat flux distributions at the heating surface are presented and discussed. In addition, melting of a PCM in a rectangular cavity with an isothermal vertical wall was simulated. To enhance the heat transfer rate during the last stage of the melting process, inverting the PCM container is shown to be an effective technique; this idea was examined with a parametric study.
Gong, Zhen-Xiang. „Time-dependent melting and freezing heat transfer in multiple phase change materials“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ29948.pdf.
Der volle Inhalt der QuelleYang, Jia. „Melting and solidification models and thermal characteristics of microencapsulated phase change materials“. Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/58140/.
Der volle Inhalt der QuelleWright, Sarah Kelly. „Melting Marvels: Tourist Responses to Climate Change and Glacial Melt in the Peruvian Andes“. Columbus, Ohio : Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1243370470.
Der volle Inhalt der QuelleWei, Xiupeng. „Multiscale modeling and simulation of material phase change problems: ice melting and copper crystallization“. Thesis, University of Iowa, 2010. https://ir.uiowa.edu/etd/904.
Der volle Inhalt der QuelleSridharan, Prashanth. „Aspect Ratio Effect on Melting and Solidification During Thermal Energy Storage“. Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4777.
Der volle Inhalt der QuelleBücher zum Thema "MELTING CHARGE"
Kotter, John P. Our iceberg is melting. [Seattle, Wash.]: J. Kotter and H. Rathgeber, 2005.
Den vollen Inhalt der Quelle findenill, Bersani Shennen, Hrsg. The glaciers are melting! Mt. Pleasant, SC: Sylvan Dell Pub., 2011.
Den vollen Inhalt der Quelle findenMelting point: New Zealand and the climate change crisis. North Shore, N.Z: Penguin Books/Penguin Group, 2008.
Den vollen Inhalt der Quelle findenHolger, Rathgeber, Hrsg. Bing shan zai rong hua: Our lceberg is melting. Hefei: An'hui ren min chu ban she, 2006.
Den vollen Inhalt der Quelle findenThe melting edge: Alaska at the frontier of climate change. Anchorage, AK: Alaska Geographic Association, 2011.
Den vollen Inhalt der Quelle findenKotter, John, Holger Rathgeber und Spenser Johnson. Our Iceberg Is Melting: Changing and Succeeding Under Any Conditions. New York: St. Martin's Press, 2006.
Den vollen Inhalt der Quelle findenCarey, Mark. In the shadow of melting glaciers: Climate change and Andean society. Oxford: Oxford University Press, 2010.
Den vollen Inhalt der Quelle findenCarey, Mark. In the shadow of melting glaciers: Climate change and Andean society. New York: Oxford University Press, 2010.
Den vollen Inhalt der Quelle findenIn the shadow of melting glaciers: Climate change and Andean society. New York: Oxford University Press, 2010.
Den vollen Inhalt der Quelle findenPolar bear, why is your world melting? Morton Grove, Ill: Albert Whitman & Co., 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "MELTING CHARGE"
Nefedov, A. V., V. V. Svichkar und O. N. Chicheneva. „Re-engineering of Equipment to Feed the Melting Furnace with Aluminum Charge“. In Lecture Notes in Mechanical Engineering, 1198–204. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54817-9_139.
Der volle Inhalt der QuelleHuber, T., S. O. Mariager, A. Ferrer, H. Schaefer, J. A. Johnson, S. Gruebel, A. Luebcke et al. „Coherent Dynamics of Structural Symmetry During the Ultrafast Melting of a Charge Density Wave“. In Springer Proceedings in Physics, 248–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13242-6_60.
Der volle Inhalt der QuelleTerai, Tomoyuki, Y. Yasui und Tomoyuki Kakeshita. „Morphology of Charge Ordered Phase and its Melting by Magnetic Field in Pr0.55Ca0.45MnO3and Nd0.5Sr0.5MnO3Single Crystals“. In ICOMAT, 655–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118803592.ch99.
Der volle Inhalt der QuelleHongwei, Guo, Yang Guangqing, Zhang Jianliang, Shao Jiugang, Fu Yuandi und Wan Dan. „Effect of Mixed Charge of Ore and Lump Coal on the Softening-Melting Property of the Burden“. In 4th International Symposium on High-Temperature Metallurgical Processing, 125–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663448.ch16.
Der volle Inhalt der QuelleKoga, Shumon, und Miroslav Krstic. „Experimental Study with Paraffin Melting“. In Materials Phase Change PDE Control & Estimation, 271–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58490-0_11.
Der volle Inhalt der QuelleLu, H. M., und Qing Jiang. „The Size Range of Volume Change of Melting“. In Materials Science Forum, 603–6. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.603.
Der volle Inhalt der QuelleStammer, D., N. Agarwal, P. Herrmann, A. Köhl und C. R. Mechoso. „Response of a Coupled Ocean–Atmosphere Model to Greenland Ice Melting“. In The Earth's Cryosphere and Sea Level Change, 621–42. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2063-3_20.
Der volle Inhalt der QuellePoudyal Chhetri, Meen B. „Downstream Impact of Melting Glaciers: Climate Change in Nepal and Beyond“. In Development in Coastal Zones and Disaster Management, 293–301. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4294-7_20.
Der volle Inhalt der QuelleFarid, Mohammed, und Atsushi Kanzawa. „Thermal Performance of a Heat Storage Module Using PCMs with Different Melting Temperatures“. In Thermal Energy Storage with Phase Change Materials, 123–36. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367567699-10.
Der volle Inhalt der QuelleAhbari, Abdellatif, Laila Stour und Ali Agoumi. „Impacts of Climate Change on the Hydro-Climatology and Performances of Bin El Ouidane Reservoir: Morocco, Africa“. In African Handbook of Climate Change Adaptation, 2363–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_245.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "MELTING CHARGE"
Baisnab, Dipak Kumar, T. Geetha Kumary, A. T. Satya, Awadhesh Mani, R. Nithya, L. S. Vaidhyanathan, M. P. Janawadkar und A. Bharathi. „Effect of current induced charge order melting of Pr0.5Ca0.5MnO3 on YBa2Cu3O7 thin film“. In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710183.
Der volle Inhalt der QuelleGrzenda, Michael, Arielle Gamboa, James Mercado, Lin Lei, Jennifer Guzman, Lisa C. Klein, Andrei Jitianu und Jonathan P. Singer. „Parametric Control of Melting Gel Morphology and Chemistry via Electrospray Deposition“. In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-63347.
Der volle Inhalt der QuelleHuber, T., S. O. Mariager, A. Ferrer, H. Schaefer, J. A. Johnson, S. Gruebel, A. Luebcke et al. „Coherent dynamics of structural symmetry during the ultrafast melting of a charge density wave“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/up.2014.07.mon.d.5.
Der volle Inhalt der QuelleAgarwal, V., M. K. Srivastava und H. K. Singh. „Observation of zero field charge order melting in oxygen deficient Pr1-XCaxMnO3 thin films“. In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980670.
Der volle Inhalt der QuelleSobhansarbandi, Sarvenaz, und Fatemeh Hassanipour. „Melting Process Expedition of Phase Change Materials via Silicone Oil“. In ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/es2018-7503.
Der volle Inhalt der QuelleBaisnab, Dipak Kumar, T. Geetha Kumary, A. T. Satya, Awadhesh Mani, J. Janaki, R. Nithya, L. S. Vaidhyanathan et al. „Strain enhanced charge order melting in Pr[sub 0.5]Ca[sub 0.5]MnO[sub 3] thin films“. In INTERNATIONAL CONFERENCE ON MAGNETIC MATERIALS (ICMM-2010). AIP, 2011. http://dx.doi.org/10.1063/1.3601816.
Der volle Inhalt der QuelleEichberger, M., H. Schäfer, M. Krumova, J. Demsar, H. Berger, G. Moriena, G. Sciaini und R. J. D. Miller. „Ultrafast order parameter melting in a 2D Charge Density Wave 1T-TaS2 probed by femtosecond electron diffraction“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/up.2010.ma2.
Der volle Inhalt der QuelleRavinuthala, Sharad Chand, und Ismail B. Celik. „Numerical Modelling of Bubble Columns for High Temperature Glass Melting Applications“. In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-22054.
Der volle Inhalt der QuellePioro, L. S., und I. L. Pioro. „High Efficiency Combined Aggregate – Submerged Combustion Melter–Electric Furnace for Vitrification of High-Level Radioactive Wastes“. In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49298.
Der volle Inhalt der QuelleMulligan, Phillip, Catherine Johnson, Jason Ho, Cody Lough und Edward Kinzel. „3D Printed Conical Shaped Charge Performance“. In 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-110.
Der volle Inhalt der Quelle