Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Melt pool convection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Melt pool convection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Melt pool convection"
Das, Saurabh, und Satya Prakash Kar. „Role of Marangoni Convection in a Repetitive Laser Melting Process“. Materials Science Forum 978 (Februar 2020): 34–39. http://dx.doi.org/10.4028/www.scientific.net/msf.978.34.
Der volle Inhalt der QuelleJähnig, Theresa, Cornelius Demuth und Andrés Fabián Lasagni. „Influence of Sulphur Content on Structuring Dynamics during Nanosecond Pulsed Direct Laser Interference Patterning“. Nanomaterials 11, Nr. 4 (27.03.2021): 855. http://dx.doi.org/10.3390/nano11040855.
Der volle Inhalt der QuelleWei, P. S., H. J. Liu und C. L. Lin. „Scaling weld or melt pool shape induced by thermocapillary convection“. International Journal of Heat and Mass Transfer 55, Nr. 9-10 (April 2012): 2328–37. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.01.034.
Der volle Inhalt der QuelleWei, Hongyang, Yi-Tung Chen und Jie Cheng. „Review of experimental study on melt pool natural convection behavior“. Annals of Nuclear Energy 122 (Dezember 2018): 101–17. http://dx.doi.org/10.1016/j.anucene.2018.08.008.
Der volle Inhalt der QuelleHan, Lijun, Frank W. Liou und Srinivas Musti. „Thermal Behavior and Geometry Model of Melt Pool in Laser Material Process“. Journal of Heat Transfer 127, Nr. 9 (25.04.2005): 1005–14. http://dx.doi.org/10.1115/1.2005275.
Der volle Inhalt der QuelleLi, Yourong, Lan Peng, Shuangying Wu und Nobuyuki Imaishi. „Bifurcation of thermocapillary convection in a shallow annular pool of silicon melt“. Acta Mechanica Sinica 23, Nr. 1 (06.01.2007): 43–48. http://dx.doi.org/10.1007/s10409-006-0053-2.
Der volle Inhalt der QuelleShi, Wanyuan, You-Rong Li, Michael K. Ermakov und Nobuyuki Imaishi. „Stability of Thermocapillary Convection in Rotating Shallow Annular Pool of Silicon Melt“. Microgravity Science and Technology 22, Nr. 3 (24.04.2010): 315–20. http://dx.doi.org/10.1007/s12217-010-9194-9.
Der volle Inhalt der QuelleFan, T. H., und F. B. Cheung. „Modeling of Transient Turbulent Natural Convection in a Melt Layer With Solidification“. Journal of Heat Transfer 119, Nr. 3 (01.08.1997): 544–52. http://dx.doi.org/10.1115/1.2824137.
Der volle Inhalt der QuelleDemuth, Cornelius, und Andrés Fabián Lasagni. „An Incompressible Smoothed Particle Hydrodynamics (ISPH) Model of Direct Laser Interference Patterning“. Computation 8, Nr. 1 (30.01.2020): 9. http://dx.doi.org/10.3390/computation8010009.
Der volle Inhalt der QuelleLi, You-Rong, Xin-Xing Zhao, Shuang-Ying Wu und Lan Peng. „Asymptotic solution of thermocapillary convection in a thin annular pool of silicon melt“. Physics of Fluids 20, Nr. 8 (August 2008): 082107. http://dx.doi.org/10.1063/1.2975172.
Der volle Inhalt der QuelleDissertationen zum Thema "Melt pool convection"
Lee, Joon Yul. „Transient thermal convection in laser melt stationary weld pool /“. The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu14876852049678.
Der volle Inhalt der QuelleZhao, Yuer. „A Numerical Study of Melt Pool Heat Transfer in the IVR of a PWR“. Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297867.
Der volle Inhalt der QuelleDenna avhandling syftar till att tillhandahålla det termiska tillståndet för smältbassängskonvektion genom CFD-simulering, vilket är viktigt för bedömningen av IVR-strategin som allmänt antagits i tryckvattenreaktorer (PWR) i Generation III. Som en åtgärd för att mildra allvarliga olyckor realiseras IVR-strategin genom extern kylning av det nedre huvudet av ett reaktortryckkärl (RPV). För att uppnå kylbarhet och kvarhållning av koriumbassängen i det nedre RPV-huvudet bör värmeflöde vid den yttre ytan av kärlet vara mindre än det kritiska värmeflödet (CHF) som kokar runt det nedre huvudet. Under sådant tillstånd garanteras RPV: s integritet av den osmälta kärlväggens tillräckliga tjocklek. Examensarbetet startar från valet och valideringen av en turbulensmodell i det valda CFD-beräkningsverktyget (Fluent). Därefter sätts en numerisk modell upp för uppskattning av smältbassängens värmeöverföring av en referens PWR med en effektkapacitet på 1000 MWe, inklusive en nätkänslighetsstudie. Baserat på den numeriska modellen för en tvålagers smältbassäng utförs fyra uppgifter för att undersöka effekterna av Zr-oxidationsförhållande, Fe-innehåll och strålningsemissivitet på värmeflödesprofiler, liksom fokuseffekten under extrema förhållanden. Val och validering av turbulensmodellen utförs genom att jämföra simuleringsresultaten för olika turbulensmodeller med DNS-data för konvektionen av volymetriskt uppvärmt fluidskikt avgränsat av styva isoterma horisontella väggar vid lika temperatur. De interna Rayleigh-siffrorna i flödet når upp till 10e6. Jämförelsen visar att SST k-ω turbulensmodellresultaten överensstämmer med DNS-data. Simuleringarna med Zr-oxidationsförhållandet 0, 0,2 och 0,5, motsvarande oxidskiktet på 1,389 m, 1,467 m och 1,580 m, och metallskiktet på 0,705 m, 0,664 m och 0,561 m i höjd, visar att temperaturen av oxidskiktet kommer att öka med Zr-oxidationsförhållandet, medan metallskiktets temperatur kommer att minska vilket resulterar i mer värmeöverföring genom oxidskiktets sidovägg och mindre toppstrålning. Ändå är effekten av Zr-oxidationsförhållandet inte uttalad i intervallet 00,5. Simuleringarna med Fe-massan på 22t, 33t och 45t och respektive höjd av metallskiktet på 0,462m, 0,568m och 0,664m visar att det inre metallskiktet avsevärt kommer att öka temperaturerna för både metallskiktet och oxiden lager. Andelen värmeöverföring vid oxidskiktets sidovägg ökar för att komplettera minskningen av den vid metallskiktet. Simuleringarna med strålningsemissiviteten 0,2, 0,35, 0,45 och 0,7 visar att emissiviteten under 0,45 påverkar värmeöverföringen, och temperaturerna och sidoväggens värmeflöde för både oxidskiktet och metallskiktet kommer att öka med minskande emissivitet. Effekten är försumbar när strålningen är över 0,45. Simuleringarna under de hypotetiskt extrema förhållandena med antingen en adiabatisk övre gräns eller ett mycket tunt metallskikt visar att fokuseringseffekten kan uppstå, dvs. värmeflödet genom metallsidan är större än det i oxidskiktet. Men det lokala höga värmeflödet plattas ut av kärlväggen med god värmeledningsförmåga. Sammanfattningsvis visar simuleringarna att, förutom fall under extrema förhållanden, är värmeflödet från smältpoolerna i alla andra fall betydligt lägre än CHF för extern kylning av nedre huvudet. Därför verkar säkerhetsmarginalen för IVR-strategin för den valda PWR tillräcklig. På grund av vissa begränsningar (t.ex. förenkling och antaganden) i simuleringsfall och koppling av olika inflytelserika faktorer, vilket indikeras av den aktuella studien, är de exakta förutsägelserna av värmeflöde under alla scenarier fortfarande svåra. Därför kunde slutsatserna inte generaliseras till de andra förhållandena eller andra konfigurationer av de smälta poolerna. Genom att diskutera modellen och förenklingar / antaganden som antagits i detta arbete föreslås förbättringsriktningarna för den numeriska modellen och andra perspektiv i slutet av avhandlingen.
Tran, Chi Thanh. „The Effective Convectivity Model for Simulation and Analysis of Melt Pool Heat Transfer in a Light Water Reactor Pressure Vessel Lower Head“. Doctoral thesis, Stockholm : Division of Nuclear Power Safety, Royal Institute of Technology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10671.
Der volle Inhalt der QuelleTran, Chi Thanh. „Development, validation and application of an effective convectivity model for simulation of melt pool heat transfer in a light water reactor lower head“. Licentiate thesis, Stockholm : Fysik, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4559.
Der volle Inhalt der QuelleNjinju, Emmanuel A. „A Geodynamic Investigation of Magma-Poor Rifting Processes and Melt Generation: A Case Study of the Malawi Rift and Rungwe Volcanic Province, East Africa“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/101867.
Der volle Inhalt der QuelleDoctor of Philosophy
Studies suggest the presence of hot, melted rock deep in the continents makes them weaker and easier to break apart, however, our understanding of how continents with less melted rock break apart remains limited largely due to sparse geophysical observations from these dry areas. To better understand how continents with less melted rock break apart, chapter 1 of this dissertation is focused on investigating the interactions between the rigid part of the Earth, called lithosphere, and the underlying lower viscosity rock layer called asthenosphere beneath the Malawi Rift, a segment of the magma-poor Western Branch of the East African Rift (EAR). Chapter 2 and 3 are focused on investigating the sources of melt beneath the Rungwe Volcanic Province (RVP), an anomalous volcanic center located at the northern tip of the Malawi Rift. In chapter 1, we use the lithospheric structure of the Malawi Rift derived from gravity data to constrain three-dimensional (3-D) numerical models of lithosphere-asthenosphere interactions, which indicate ~3 cm/yr asthenospheric upwelling beneath the thin lithosphere (115-125 km) of the northern Malawi Rift and the RVP that does not seem to drive movements at the surface. We suggest that the asthenospheric upwelling may generate melted rock which weakens the lithosphere thereby enabling extension. However, the source of asthenospheric melt for the RVP is still contentious. Some studies suggest the asthenospheric melt beneath the RVP arises from thermal perturbations in the upper mantle associated with rising mantle rocks or plume head materials, while others propose melting occurs from upwelling asthenosphere due to lithospheric modulated convection (LMC) where the lithosphere is thin. Chapter 2 of this dissertation is focused on testing the hypothesis that asthenospheric melt feeding the RVP can be generated from LMC. We develop a 3D thermomechanical model of LMC beneath the RVP and the entire Malawi Rift that incorporates melt generation. We find decompression melt associated with LMC upwelling (~3 cm/yr) occurs at a maximum depth of ~150 km localized beneath the RVP. Studies of volcanic rock samples from the RVP indicate plume signatures which are enigmatic since the RVP is highly localized, unlike the large igneous provinces in the Eastern Branch of the EAR. In chapter 3, we investigate melt generation from plume-lithosphere interactions (PLI) beneath the RVP. We develop a 3D model of convection using information from seismology we call tomography-based convection (TBC) beneath the RVP. The seismic data indicate excess temperatures of ~250 K beneath the RVP suggesting the presence of a plume. We find a relatively fast upwelling (~10 cm/yr) beneath the RVP which we interpret as a rising plume. The TBC upwelling generates decompression melt at a maximum depth of ~200 km beneath the RVP. Our results demonstrate that an excess heat source from may be plume materials is necessary for melt generation in the sublithospheric mantle beneath the RVP because passive asthenospheric upwelling of ambient mantle will require a higher than normal mantle potential temperatures to generate melt.
Liu, Han-Jen, und 劉瀚仁. „Scaling Weld or Melt Pool Shape Affected by Thermocapillary Convection with High Prandtl number“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/98456997020361865364.
Der volle Inhalt der Quelle國立中山大學
機械與機電工程學系研究所
99
The molten pool shape and thermocapillary convection during melting or welding of metals or alloys are self-consistently predicted from scale analysis. Determination of the molten pool shape and transport variables is crucial due to its close relationship with the strength and properties of the fusion zone. In this work, surface tension coefficient is considered to be negative, indicating an outward surface flow, whereas high Prandtl number represents a thinner thickness of the thermal boundary layer than that of momentum boundary layer. Since Marangoni number is usually very high, the domain of scaling is divided into the hot, intermediate and cold corner regions, boundary layers on the solid-liquid interface and ahead of the melting front. The results find that the width and depth of the pool, peak and secondary surface velocity, and maximum temperatures in the hot and cold corner regions can be explicitly and separately determined as functions of working variables or Marangoni, Prandtl, Peclet, Stefan, and beam power numbers. The scaled results agree with numerical data, different combinations among scaled equations, and available experimental data.
Bücher zum Thema "Melt pool convection"
Yang, Kun. Observed Regional Climate Change in Tibet over the Last Decades. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.587.
Der volle Inhalt der QuelleBuchteile zum Thema "Melt pool convection"
Ehrhard, P., und CH Hölle. „Buoyancy-Driven Melt Pool Convection during Laser Surface Treatment“. In Interactive Dynamics of Convection and Solidification, 217–20. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2809-4_34.
Der volle Inhalt der QuelleNourgaliev, R. R., T. N. Dinh und B. R. Sehgal. „Natural Convection in Volumetrically Heated and Side-Wall Heated Melt Pools: Three Dimensional Effects“. In Notes on Numerical Fluid Mechanics (NNFM), 202–9. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-89838-8_27.
Der volle Inhalt der QuelleXiao, Xianfeng, Cong Lu, Yanshu Fu, Xiaojun Ye und Lijun Song. „Progress on Experimental Study of Melt Pool Flow Dynamics in Laser Material Processing“. In Liquid Metals [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97205.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Melt pool convection"
Gubaidullin, A. A., und B. R. Sehgal. „Simeco Tests in a Melt Stratified Pool“. In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22709.
Der volle Inhalt der QuelleLuo, Simin, Xin'an Wang, Yapei Zhang, Dalin Zhang, Suizheng Qiu und Guanghui Su. „Numerical Research on Melt Pool Flow Characteristics Under Rolling Condition“. In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81994.
Der volle Inhalt der QuelleChakraborty, Nilanjan, und Suman Chakraborty. „Modelling of Turbulent Transport in Laser Melt Pools“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45774.
Der volle Inhalt der QuelleZhou, Yukun, Yapei Zhang, Simin Luo, Zhichun Xu, Luteng Zhang, Suizheng Qiu und G. H. Su. „COPRA Experiments on Melt Pool Behavior With Eutectic NaNO3-KNO3 Simulant“. In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81367.
Der volle Inhalt der QuelleMistry, Utsavkumar, und Madhu Vadali. „Influence of Surface Geometry on Melt Pool Flows and Shape in Pulsed Laser Surface Melting“. In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-60460.
Der volle Inhalt der QuelleKamara, A. M., W. Wang, S. Marimuthu, A. J. Pinkerton und L. Li. „Influence of melt pool convection on residual stress induced in laser cladding and powder deposition“. In PICALO 2010: 4th Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. Laser Institute of America, 2010. http://dx.doi.org/10.2351/1.5057208.
Der volle Inhalt der QuelleZhang, Yapei, Luteng Zhang, Wenxi Tian, Suizheng Qiu und Guanghui Su. „Numerical Study on the Heat Transfer Characteristics of COPRA-L1 Melt Pool Based on the LES Method“. In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60857.
Der volle Inhalt der QuelleAcharya, Ranadip, Rohan Bansal, Justin J. Gambone und Suman Das. „Modeling of Solidification and Microstructure Evolution in the Scanning Laser Epitaxy (SLE) Process for Additive Manufacturing With Nickel-Base Superalloy Powders“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66807.
Der volle Inhalt der QuelleAmižić, Milan, Estelle Guyez und Jean-Marie Seiler. „Experimental Investigation on Heat Transfer for Two-Phase Flow Under Natural Convection“. In 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icone20-power2012-55225.
Der volle Inhalt der QuelleHan, L., und J. Choi. „Two Dimensional Modeling of Laser Cladding With Droplet Injection“. In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47295.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Melt pool convection"
Barney, R. Investigation of Marangoni convection with high-fidelity simulations for metal melt pool dynamics. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1573160.
Der volle Inhalt der Quelle