Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Medical physics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Medical physics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Medical physics"
Wagner, L. K., M. J. Bronskill, G. T. Chen, T. L. Chenevert, E. Gardner, R. Gelse, M. Madsen, E. R. Ritenour, B. Schueler und J. A. Seibert. „Medical physics.“ Radiology 190, Nr. 3 (März 1994): 945–51. http://dx.doi.org/10.1148/radiology.190.3.8115661.
Der volle Inhalt der QuelleLeuenberger, Ronald, Ryan Kocak, David W. Jordan und Tim George. „Medical Physics“. Health Physics 115, Nr. 4 (Oktober 2018): 512–22. http://dx.doi.org/10.1097/hp.0000000000000894.
Der volle Inhalt der QuelleHuda, W., J. M. Boone, S. Connors, A. Fenster, J. C. Gore, J. C. Honeyman, M. Madsen, E. L. Nickoloff, R. M. Nishikawa und L. K. Wagner. „Medical physics.“ Radiology 198, Nr. 3 (März 1996): 941–49. http://dx.doi.org/10.1148/radiology.198.3.8628902.
Der volle Inhalt der QuelleMishkat Ali Jafri und Intikhab Ulfat. „Medical Physics.“ International Journal of Endorsing Health Science Research 11, Nr. 4 (01.12.2023): 169–70. http://dx.doi.org/10.29052/ijehsr.v11.i4.2023.169-170.
Der volle Inhalt der QuelleMahesh, Mahadevappa. „Medical Physics 3.0“. Journal of the American College of Radiology 18, Nr. 12 (Dezember 2021): 1596–97. http://dx.doi.org/10.1016/j.jacr.2021.10.002.
Der volle Inhalt der QuelleSamei, Ehsan. „Medical Physics 3.0“. Health Physics 116, Nr. 2 (Februar 2019): 247–55. http://dx.doi.org/10.1097/hp.0000000000001022.
Der volle Inhalt der QuelleFeder, Toni. „Medical Physics Fellowships“. Physics Today 55, Nr. 3 (März 2002): 33. http://dx.doi.org/10.1063/1.4796677.
Der volle Inhalt der QuelleGibson, A. P., E. Cook und A. Newing. „Teaching Medical Physics“. Physics Education 41, Nr. 4 (20.06.2006): 301–6. http://dx.doi.org/10.1088/0031-9120/41/4/001.
Der volle Inhalt der QuelleVu, Hoang T. „Medical Health Physics“. Health Physics 92, Nr. 2 (Februar 2007): 187. http://dx.doi.org/10.1097/01.hp.0000252347.45110.71.
Der volle Inhalt der QuelleReddy, AR. „Medical Radiological Physics“. Journal of Medical Physics 37, Nr. 3 (2012): 163. http://dx.doi.org/10.4103/0971-6203.99241.
Der volle Inhalt der QuelleDissertationen zum Thema "Medical physics"
Lazarine, Alexis D. „Medical physics calculations with MCNP: a primer“. Texas A&M University, 2006. http://hdl.handle.net/1969.1/4297.
Der volle Inhalt der QuelleRolland, Jannick Paule Yvette. „Factors influencing lesion detection in medical imaging“. Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185096.
Der volle Inhalt der QuelleGharama, Huda. „A Planar Lightguide Power Combiner for Medical Applications“. University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1508173552760426.
Der volle Inhalt der QuelleRedd, Randall Alex. „Radiation dosimetry and medical physics calculations using MCNP 5“. Texas A&M University, 2004. http://hdl.handle.net/1969.1/467.
Der volle Inhalt der QuelleWang, Yi Zhen 1965. „Photoneutrons and induced activity from medical linear accelerators“. Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81453.
Der volle Inhalt der QuelleFörster, Fabian Alexander. „Novel CMOS Devices for High Energy Physics and Medical Applications“. Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670504.
Der volle Inhalt der QuelleLos experimentos de física de alta energía (HEP) en colisionadores de partículas sondean nuestra comprensión de la estructura y la dinámica de la materia. Para avanzar en el campo, los sistemas de aceleración se actualizan periódicamente a mayores energías y luminosidades. Los experimentos tienen que mantenerse al día, mejorando la instrumentación de su detector. Los detectores de píxeles de silicio desempeñan un papel fundamental en los experimentos con HEP. Gracias a su excelente resolución de posición, compacidad, velocidad y dureza de radiación, permiten la reconstrucción de pistas de partículas en entornos de alta radiación como colisionadores de hadrones. A su vez, su rendimiento permite una excelente resolución de parámetros de impacto en la pista, un ingrediente clave para la identificación secundaria de vértices y el etiquetado de chorro b. Actualmente, el detector de píxeles estándar consta de un sensor segmentado, en el que cada píxel está conectado a un canal de lectura de un circuito integrado de aplicación específica (ASIC) a través de una técnica complicada y costosa llamada unión por golpes. Un enfoque alternativo a los dispositivos de píxeles híbridos son los detectores monolíticos, que combinan la detección de partículas y las tareas de procesamiento de señales en el mismo sustrato. Estos tipos de detectores desarrollados en el proceso CMOS se han utilizado en el pasado, pero solo relativamente recientemente basados en dispositivos de radiación dura sobre esta tecnología se han propuesto. En esta tesis, se investiga un primer prototipo de tamaño completo de un detector monolítico desarrollado en la tecnología CMOS de alto voltaje (HV-CMOS) como un dispositivo de píxeles para las capas externas del rastreador ATLAS de actualización futura, que se encuentra en el Gran Colisionador de Hadrones ( LHC) en el CERN. Además de la aplicación de esta tecnología en experimentos HEP, la detección de fotones de rayos X blandos también se investiga en una matriz en uno de los detectores de píxeles HV-CMOS. Por último, se explora el uso de dispositivos CMOS para la detección de fotones de infrarrojo cercano (NIR) con Avalanche Photodiode (APD).
High Energy Physics (HEP) experiments at particle colliders probe our understanding of the structure and dynamics of matter. In order to advance the field, the accelerator systems are periodically upgraded to higher energies and luminosities. Experiments have to keep up, by improving their detector instrumentation. Silicon pixel detectors play a critical role in HEP experiments. Thanks to their excellent position resolution, compactness, speed and radiation hardness, they enable particle track reconstruction in high radiation environments like hadron colliders. In turn, their performance allows excellent track impact parameter resolution, a key ingredient for secondary vertex identification and jet b-tagging. Currently the standard pixel detector consists of a segmented sensor, in which each pixel is connected to a readout channel of an Application-Specific Integrated Circuit (ASIC) through a complicated, and expensive, technique called bump bonding. An alternative approach to hybrid pixel devices are monolithic detectors, which combine the particle sensing and the signal processing tasks in the same substrate.These kinds of detectors developed in the CMOS process have been used in the past, but only relatively recently radiation hard devices based on this technology have been proposed. In this thesis a first full size prototype of a monolithic detector developed in the High Voltage CMOS (HV-CMOS) technology is investigated as a pixel device for the outer layers of the future upgrade ATLAS tracker, which is located in the Large Hadron Collider (LHC) at CERN. Besides the application of this technology in HEP experiments, the detection of soft X-ray photons is also investigated in one matrix in one of the HV-CMOS pixel detectors. Lastly, the usage of CMOS devices for the detection of Near-Infrared (NIR) photons with Avalanche Photodiode (APD) is explored.
Andrews, Brian. „Computational Solutions for Medical Issues in Ophthalmology“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case15275972120621.
Der volle Inhalt der QuelleScannavini, Maria Giulia. „Medical Compton cameras based on semiconductor detectors“. Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251785.
Der volle Inhalt der QuelleRatcliffe, Naomi. „Potential of a compact low energy proton accelertor for medical applications“. Thesis, University of Huddersfield, 2014. http://eprints.hud.ac.uk/id/eprint/23711/.
Der volle Inhalt der QuelleLazarus, Graeme Lawrence. „Validation of Monte Carlo-based calculations for small irregularly shaped intra-operative radiotherapy electron beams“. Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/16680.
Der volle Inhalt der QuelleBücher zum Thema "Medical physics"
Hollins, Martin. Medical physics. Walton-on-Thames: Nelson, 1992.
Den vollen Inhalt der Quelle findenPeet, Debbie, und Emma Chung. Practical Medical Physics. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425.
Der volle Inhalt der QuellePope, Jean A. Medical physics: Imaging. Oxford: Heinemann, 1999.
Den vollen Inhalt der Quelle finden1953-, Ritenour E. Russell, und Hendee William R, Hrsg. Medical imaging physics. 3. Aufl. St. Louis: Mosby Year Book, 1992.
Den vollen Inhalt der Quelle findenE, Williams Lawrence, Hrsg. Nuclear medical physics. Boca Raton, FL: CRC Press, 1987.
Den vollen Inhalt der Quelle finden1953-, Ritenour E. Russell, Hrsg. Medical imaging physics. 4. Aufl. New York: Wiley-Liss, 2002.
Den vollen Inhalt der Quelle findenSociety, Biological Engineering. Medical engineering & physics. Oxford, UK: Butterworth-Heinemann, 1994.
Den vollen Inhalt der Quelle findenKeevil, Stephen, Renato Padovani, Slavik Tabakov, Tony Greener und Cornelius Lewis. Introduction to Medical Physics. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155758.
Der volle Inhalt der QuelleSun, Jidi. MATLAB for Medical Physics. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7565-3.
Der volle Inhalt der QuelleInternational Symposium on Physics of Medical Imaging and Advances in Computer Applications (1990). Physics of medical imaging. Herausgegeben von Rehani M. M. Delhi: Macmillan India, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Medical physics"
Patel, Nisha R., Michael L. Wong, Anthony E. Dragun, Stephan Mose, Bernadine R. Donahue, Jay S. Cooper, Filip T. Troicki et al. „Medical Physics“. In Encyclopedia of Radiation Oncology, 490–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_762.
Der volle Inhalt der QuelleHendee, William R., und Michael Yester. „Medical Physics“. In AIP Physics Desk Reference, 467–91. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_15.
Der volle Inhalt der QuelleMenon, Geetha. „Basic Medical Physics“. In Radiotherapy in Skin Cancer, 25–38. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-44316-9_2.
Der volle Inhalt der QuelleWynn-Jones, Andrea, Caroline Reddy, John Gittins, Philip Baker, Anna Mason und Greg Jolliffe. „Radiotherapy Physics“. In Practical Medical Physics, 155–202. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-6-8.
Der volle Inhalt der QuelleChung, Emma, und Justyna Janus. „Ultrasound Physics“. In Practical Medical Physics, 51–69. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-3-4.
Der volle Inhalt der QuelleAmestoy, William. „Radiation Physics“. In Review of Medical Dosimetry, 1–108. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13626-4_1.
Der volle Inhalt der QuelleTao, Chen, Zhang Ting, Wang Guang Chang, Zhou Ji Fang, Zhang Jian Wei und Liu Yu Hong. „Medical Physics Curriculum Reform“. In Lecture Notes in Electrical Engineering, 715–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24820-7_114.
Der volle Inhalt der QuelleRajan, K. N. Govinda. „Basic Medical Radiation Physics“. In Radiation Safety in Radiation Oncology, 25–94. Boca Raton, FL: CRC Press, Taylor & Francis Group, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315119656-2.
Der volle Inhalt der QuelleSprawls, Perry. „Medical Physics, an Introduction“. In Introduction to Medical Physics, 1–13. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155758-1.
Der volle Inhalt der QuelleChowdhury, Alimul. „Magnetic Resonance Imaging Physics“. In Practical Medical Physics, 25–49. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-2-3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Medical physics"
Kralova, Eva. „ATTITUDES OF MEDICAL STUDENTS TOWARDS PHYSICS AND MEDICAL PHYSICS“. In 12th annual International Conference of Education, Research and Innovation. IATED, 2019. http://dx.doi.org/10.21125/iceri.2019.0799.
Der volle Inhalt der QuelleTrujillo Zamudio, Flavio E., María-Ester Brandan, Isabel Gamboa-deBuen, Gerardo Herrera-Corral und Luis A. Medina-Velázquez. „Preface: Medical Physics“. In MEDICAL PHYSICS: Twelfth Mexican Symposium on Medical Physics. AIP, 2012. http://dx.doi.org/10.1063/1.4764583.
Der volle Inhalt der QuelleMower, Herbert W., und Hakeem M. Oluseyi. „Medical Physics Professional Societies“. In 007. AIP, 2008. http://dx.doi.org/10.1063/1.2905132.
Der volle Inhalt der QuellePadmapriya, K., und P. Ezhumalai. „Equipping the medical images for medical diagnosis“. In WOMEN IN PHYSICS: 7th IUPAP International Conference on Women in Physics. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0182366.
Der volle Inhalt der QuelleZárate-Morales, A., M. Rodrı́guez-Villafuerte, F. Martı́nez-Rodrı́guez und N. Arévila-Ceballos. „Determination of left ventricular mass through SPECT imaging“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56376.
Der volle Inhalt der QuelleWright, Steven M. „RF coil arrays in MRI“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56377.
Der volle Inhalt der QuelleRuiz, C., A. E. Buenfil, I. Gamboa-deBuen, M. Rodrı́guez-Villafuerte, P. Avilés, C. Olvera und M. E. Brandan. „A novel method to use radiochromic dye films to determine dose under proton irradiation“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56372.
Der volle Inhalt der QuelleAranda, S., und H. Aranda-Espinoza. „Virus—Cell—Fusion“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56373.
Der volle Inhalt der QuelleHuerta, R., A. Hernández und J. J. Alvarado-Gil. „On the motility of living invertebrates The case of“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56374.
Der volle Inhalt der QuelleMendoza-Alvarez, Julio G. „Biochips: A fruitful product of solid state physics and molecular biology“. In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56375.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Medical physics"
Herman, Michael, A. Harms, Kenneth Hogstrom, Eric Klein, Lawrence Reinstein, Lawrence Rothenberg, Brian Wichman et al. Alternative Clinical Medical Physics Training Pathways for Medical Physicists. AAPM, August 2008. http://dx.doi.org/10.37206/119.
Der volle Inhalt der QuellePaliwal, Bhudatt R., James C. H. Chu, Paul M. DeLuca, Arnold Feldman, Ellen E. Grein, Donald E. Herbert, Edward F. Jackson et al. Academic Program Recommendations for Graduate Degrees in Medical Physics. AAPM, 2002. http://dx.doi.org/10.37206/79.
Der volle Inhalt der QuelleHalvorsen, Per H., Julie F. Dawson, Martin W. Fraser, Geoffrey S. Ibbott und Bruce R. Thomadsen. The Solo Practice of Medical Physics in Radiation Oncology. AAPM, 2003. http://dx.doi.org/10.37206/80.
Der volle Inhalt der QuellePrisciandaro, Joann, Charles Willis, Jay Burmeister, Geoffrey Clarke, Rupak Das, Jacqueline Esthappan, Bruce Gerbi et al. Essentials and Guidelines for Clinical Medical Physics Residency Training Programs. AAPM, Oktober 2013. http://dx.doi.org/10.37206/149.
Der volle Inhalt der QuelleJr., Paul M. DeLuca, F. H. Attix, Daniel A. Bassano, J. Larry Beach, L. Stephen Graham, David Gur, Gerda B. Krefft et al. Academic Program for Master of Science Degree in Medical Physics. AAPM, 1993. http://dx.doi.org/10.37206/43.
Der volle Inhalt der QuelleDeluca, Paul, Ellen Grein, Donald Herbert, Edward Jackson, Ervin Podgorsak, E. Russell Ritenour, Jennifer Smilowitz, George Starkschall und Frank Verhaegen. Academic Program Recommendations for Graduate Degrees in Medical Physics (2009). Chair Bhudatt Paliwal. American Association of Physicists in Medicine, April 2009. http://dx.doi.org/10.37206/197.
Der volle Inhalt der QuelleSternick, Edward S., Richard G. Evans, E. Roblert Heitzman, James G. Kereiakes, Edwin C. McCullough, Richard L. Morin, J. Thomas Payne et al. Essentials and Guidelines for Hospital Based Medical Physics Residency Training Programs. AAPM, 1990. http://dx.doi.org/10.37206/35.
Der volle Inhalt der QuelleLane, Richard G., Donna M. Stevens, John P. Gibbons, Lynn J. Verhey, Kenneth R. Hogstrom, Edward L. Chaney, Melissa C. Martin et al. Essentials and Guidelines for Hospital-Based Medical Physics Residency Training Programs. AAPM, 2006. http://dx.doi.org/10.37206/91.
Der volle Inhalt der QuelleHetzel, Fred W., Suresh M. Brahmavar, Qun Chen, Steven L. Jacques, Michael S. Patterson, Brian C. Wilson und Timothy C. Zhu. Photodynamic Therapy Dosimetry: A Task Group Report of the General Medical Physics Committee of the Science Council. AAPM, 2005. http://dx.doi.org/10.37206/89.
Der volle Inhalt der QuelleGress, Dustin, David Jordan, Priscilla Butler, Jessica Clements, Kenneth Coleman, David Lloyd Goff, Melissa Martin et al. An Updated Description of the Professional Practice of Diagnostic and Imaging Medical Physics: The Report of AAPM Diagnostic Work and Workforce Study Subcommittee. AAPM, Mai 2017. http://dx.doi.org/10.37206/163.
Der volle Inhalt der Quelle