Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Medical image anonymization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Medical image anonymization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Medical image anonymization"
Ueda, Satoshi. „Activities for Anonymization in Image Medical Systems“. Japanese Journal of Radiological Technology 75, Nr. 9 (2019): 1109–11. http://dx.doi.org/10.6009/jjrt.2019_jsrt_75.9.1109.
Der volle Inhalt der QuelleGießler, Fina, Maximilian Thormann, Bernhard Preim, Daniel Behme und Sylvia Saalfeld. „Facial Feature Removal for Anonymization of Neurological Image Data“. Current Directions in Biomedical Engineering 7, Nr. 1 (01.08.2021): 130–34. http://dx.doi.org/10.1515/cdbme-2021-1028.
Der volle Inhalt der QuelleSun, Hanxi, Jason Plawinski, Sajanth Subramaniam, Amir Jamaludin, Timor Kadir, Aimee Readie, Gregory Ligozio, David Ohlssen, Mark Baillie und Thibaud Coroller. „A deep learning approach to private data sharing of medical images using conditional generative adversarial networks (GANs)“. PLOS ONE 18, Nr. 7 (06.07.2023): e0280316. http://dx.doi.org/10.1371/journal.pone.0280316.
Der volle Inhalt der QuelleShibata, Hisaichi, Shouhei Hanaoka, Takahiro Nakao, Tomohiro Kikuchi, Yuta Nakamura, Yukihiro Nomura, Takeharu Yoshikawa und Osamu Abe. „Practical Medical Image Generation with Provable Privacy Protection Based on Denoising Diffusion Probabilistic Models for High-Resolution Volumetric Images“. Applied Sciences 14, Nr. 8 (20.04.2024): 3489. http://dx.doi.org/10.3390/app14083489.
Der volle Inhalt der QuelleYordanova, Mariana. „Recent Applications of Cloud Computing in Medical Imaging: Advances in Medical Image Analysis and Storage of Medical Imaging Data“. Advances in Social Sciences Research Journal 11, Nr. 5 (31.05.2024): 267–71. http://dx.doi.org/10.14738/assrj.115.16941.
Der volle Inhalt der QuelleJeong, Yeon Uk, Soyoung Yoo, Young-Hak Kim und Woo Hyun Shim. „De-Identification of Facial Features in Magnetic Resonance Images: Software Development Using Deep Learning Technology“. Journal of Medical Internet Research 22, Nr. 12 (10.12.2020): e22739. http://dx.doi.org/10.2196/22739.
Der volle Inhalt der QuelleDavid Odera. „A survey on techniques, methods and security approaches in big data healthcare“. Global Journal of Engineering and Technology Advances 14, Nr. 2 (28.02.2023): 093–106. http://dx.doi.org/10.30574/gjeta.2023.14.2.0035.
Der volle Inhalt der QuelleChin, Trisha J. M., Gillian X. M. Chin, James Sutherland, Andrew Coon, Colin Morton und Colin Fleming. „BT24 Pseudonymization for artificial intelligence skin lesion datasets: a real-world feasibility study“. British Journal of Dermatology 191, Supplement_1 (28.06.2024): i199—i200. http://dx.doi.org/10.1093/bjd/ljae090.421.
Der volle Inhalt der QuelleSulema, Ye S., und A. I. Dychka. „Software system of automatic identification and distributed storage of patient medical data“. System technologies 3, Nr. 146 (11.05.2023): 134–48. http://dx.doi.org/10.34185/1562-9945-3-146-2023-13.
Der volle Inhalt der QuelleCordeiro, Natália, Gil Facina, Afonso Nazário, Vanessa Sanvido, Joaquim Araujo Neto, Morgana Silva und Simone Elias. „Abstract PO2-29-02: Towards Precision Medicine in Breast Imaging: A Novel Open Mammography Database with Tailor-Made 3D Image Retrieval for Artificial Intelligence and Teaching“. Cancer Research 84, Nr. 9_Supplement (02.05.2024): PO2–29–02—PO2–29–02. http://dx.doi.org/10.1158/1538-7445.sabcs23-po2-29-02.
Der volle Inhalt der QuelleDissertationen zum Thema "Medical image anonymization"
Li, Huiyu. „Exfiltration et anonymisation d'images médicales à l'aide de modèles génératifs“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4041.
Der volle Inhalt der QuelleThis thesis aims to address some specific safety and privacy issues when dealing with sensitive medical images within data lakes. This is done by first exploring potential data leakage when exporting machine learning models and then by developing an anonymization approach that protects data privacy.Chapter 2 presents a novel data exfiltration attack, termed Data Exfiltration by Compression (DEC), which leverages image compression techniques to exploit vulnerabilities in the model exporting process. This attack is performed when exporting a trained network from a remote data lake, and is applicable independently of the considered image processing task. By exploring both lossless and lossy compression methods, this chapter demonstrates how DEC can effectively be used to steal medical images and reconstruct them with high fidelity, using two public CT and MR datasets. This chapter also explores mitigation measures that a data owner can implement to prevent the attack. It first investigates the application of differential privacy measures, such as Gaussian noise addition, to mitigate this attack, and explores how attackers can create attacks resilient to differential privacy. Finally, an alternative model export strategy is proposed which involves model fine-tuning and code verification.Chapter 3 introduces the Generative Medical Image Anonymization framework, a novel approach to balance the trade-off between preserving patient privacy while maintaining the utility of the generated images to solve downstream tasks. The framework separates the anonymization process into two key stages: first, it extracts identity and utility-related features from medical images using specially trained encoders; then, it optimizes the latent code to achieve the desired trade-off between anonymity and utility. We employ identity and utility encoders to verify patient identities and detect pathologies, and use a generative adversarial network-based auto-encoder to create realistic synthetic images from the latent space. During optimization, we incorporate these encoders into novel loss functions to produce images that remove identity-related features while maintaining their utility to solve a classification problem. The effectiveness of this approach is demonstrated through extensive experiments on the MIMIC-CXR chest X-ray dataset, where the generated images successfully support lung pathology detection.Chapter 4 builds upon the work from Chapter 4 by utilizing generative adversarial networks (GANs) to create a more robust and scalable anonymization solution. The framework is structured into two distinct stages: first, we develop a streamlined encoder and a novel training scheme to map images into a latent space. In the second stage, we minimize the dual-loss functions proposed in Chapter 3 to optimize the latent representation of each image. This method ensures that the generated images effectively remove some identifiable features while retaining crucial diagnostic information. Extensive qualitative and quantitative experiments on the MIMIC-CXR dataset demonstrate that our approach produces high-quality anonymized images that maintain essential diagnostic details, making them well-suited for training machine learning models in lung pathology classification.The conclusion chapter summarizes the scientific contributions of this work, and addresses remaining issues and challenges for producing secured and privacy preserving sensitive medical data
Buchteile zum Thema "Medical image anonymization"
Shin, Hoo-Chang, Neil A. Tenenholtz, Jameson K. Rogers, Christopher G. Schwarz, Matthew L. Senjem, Jeffrey L. Gunter, Katherine P. Andriole und Mark Michalski. „Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks“. In Simulation and Synthesis in Medical Imaging, 1–11. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00536-8_1.
Der volle Inhalt der Quelle„Cybersecurity in Medical Sector“. In Advances in Web Technologies and Engineering, 117–48. IGI Global, 2024. http://dx.doi.org/10.4018/978-1-6684-8686-3.ch005.
Der volle Inhalt der QuelleKokomoto, Kazuma, Rena Okawa, Kazuhiko Nakano und Kazunori Nozaki. „Panoramic Radiograph Generation and Image Reconstruction from Latent Vectors Using a Generative Adversarial Network“. In Studies in Health Technology and Informatics. IOS Press, 2024. http://dx.doi.org/10.3233/shti231263.
Der volle Inhalt der QuelleAlicherif, Nora. „Privacy Preserving in the Medical Sector“. In Advanced Bioinspiration Methods for Healthcare Standards, Policies, and Reform, 221–39. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-5656-9.ch012.
Der volle Inhalt der QuelleHudedagaddi, Deepthi P., und B. K. Tripathy. „Clustering Approaches in Decision Making Using Fuzzy and Rough Sets“. In Handbook of Research on Fuzzy and Rough Set Theory in Organizational Decision Making, 116–36. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1008-6.ch006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Medical image anonymization"
Chen, Wei-Yu, Mulder Yu und Ceasar Sun. „Architecture and Building the Medical Image Anonymization Service: Cloud, Big Data and Automation“. In 2021 International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB). IEEE, 2021. http://dx.doi.org/10.1109/iceib53692.2021.9686426.
Der volle Inhalt der QuelleSuzuki, H., M. Amano, M. Kubo, Y. Kawata, N. Niki und H. Nishitani. „Anonymization server system for DICOM images“. In Medical Imaging, herausgegeben von Steven C. Horii und Katherine P. Andriole. SPIE, 2007. http://dx.doi.org/10.1117/12.709947.
Der volle Inhalt der QuellePiano, Luca, Pietro Basci, Fabrizio Lamberti und Lia Morra. „Harnessing Foundation Models for Image Anonymization“. In 2024 IEEE Gaming, Entertainment, and Media Conference (GEM). IEEE, 2024. http://dx.doi.org/10.1109/gem61861.2024.10585484.
Der volle Inhalt der Quelle