Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Medical device validation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Medical device validation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Medical device validation"
Klein, Devorah E., und Matthew J. Jordan. „Methods of Assessing Medical Devices“. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 46, Nr. 23 (September 2002): 1890–94. http://dx.doi.org/10.1177/154193120204602305.
Der volle Inhalt der QuelleJones, Randy D., David L. Stalling, Jon Davis, Patrick Jurkovich und Kirk LaPointe. „Software validation for medical device manufacturing“. Quality Assurance Journal 7, Nr. 4 (2003): 242–47. http://dx.doi.org/10.1002/qaj.245.
Der volle Inhalt der QuelleGagliardi, John. „Medical Device Software: Verification, Validation and Compliance“. Biomedical Instrumentation & Technology 45, Nr. 2 (01.03.2011): 95. http://dx.doi.org/10.2345/0899-8205-45.2.95.
Der volle Inhalt der QuelleDesain, C., und C. Vercimak Sutton. „Validation for Medical Device and Diagnostic Manufacturers“. Journal of Clinical Engineering 21, Nr. 1 (Januar 1996): 30–31. http://dx.doi.org/10.1097/00004669-199601000-00010.
Der volle Inhalt der Quelle標準委員会. „Guideline for Steilization of Medical Device Validation“. JAPANES JOURNAL OF MEDICAL INSTRUMENTATION 68, Nr. 9 (01.09.1998): 399–406. http://dx.doi.org/10.4286/ikakikaigaku.68.9_399.
Der volle Inhalt der Quelle標準委員会. „Guideline for Sterilization of Medical Device Validation“. JAPANES JOURNAL OF MEDICAL INSTRUMENTATION 68, Nr. 7 (01.07.1998): 295–311. http://dx.doi.org/10.4286/ikakikaigaku.68.7_295.
Der volle Inhalt der QuelleZhao, Yincheng, Kuangjie Sheng, Zheng Wang, Xilin Zhang, HengyiYang und Rui Miao. „Process Validation and Revalidation in Medical Device Production“. Procedia Engineering 174 (2017): 686–92. http://dx.doi.org/10.1016/j.proeng.2017.01.207.
Der volle Inhalt der QuelleMcEvoy, Brian, Stacy Bohl Wiehle, Ken Gordon, Gerry Kearns, Paulo Laranjeira und Nicole McLees. „Advancing the Sustainable Use of Ethylene Oxide through Process Validation“. Biomedical Instrumentation & Technology 55, s3 (01.03.2021): 35–44. http://dx.doi.org/10.2345/0899-8205-55.s3.35.
Der volle Inhalt der QuelleClark, Shannon E. „Training Decay Selection for Usability Validation“. Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care 5, Nr. 1 (Juni 2016): 76–83. http://dx.doi.org/10.1177/2327857916051018.
Der volle Inhalt der QuelleVogel, David A. „Medical Device Validation: How Vendors Can Assist their Customers“. Biomedical Instrumentation & Technology 41, Nr. 6 (November 2007): 465–68. http://dx.doi.org/10.2345/0899-8205(2007)41[465:mdvhvc]2.0.co;2.
Der volle Inhalt der QuelleDissertationen zum Thema "Medical device validation"
Kothari, Ashish (Ashish Shrikant). „Impact of the CE mark approval on exit opportunities and validation for early stage medical device companies“. Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65522.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 85-87).
The aim of this thesis was to look at the impact of acquiring the CE marking approval on the outcome of early stage medical device companies, specifically its impact on strategic acquisition opportunities and on valuation. We gathered data on acquisitions of 237 companies over the past ten years, from April 01, 2002 to March 31, 2011. These data were gathered from various sources, and information on the date of acquisition, enterprise value, funds invested to date, date of incorporation, status and dates of CE and FDA approvals, patent status, type of regulatory clearances (PMA versus 510K), type of sales models (direct versus distributorship), capitalization status and last twelve month stock returns of the acquirer was acquired. These data were then analyzed using basic statistical methods and multivariate linear regression analyses to determine the significance of the CE marking on the outcomes of these companies. Our results support the claim that the CE mark does significantly improve outcomes for early stage medical device companies, in terms of time to strategic acquisition, which is by far the commonest exit route for these companies. On the other hand, we did not find any statistically significant impact of acquisition of the CE mark on the valuation or valuation multiples of these companies. These results have potential implications for management of these early stage medical device companies in making strategic decisions and for investors who are concerned about the exit opportunities and valuations, especially as it relates to funds invested. There could also be some policy implications in terms of the effort, duration and cost of getting a CE approval versus that of an FDA approval, which is especially important given the current growing concern about increasingly stringent regulation, rising costs and increasing delays in FDA approvals for medical devices.
by Ashish Kothari.
S.M.
Guynes, Eric C. „Strategies for Shipping Temperature-Sensitive Medical Devices Using Cognitive Mapping“. ScholarWorks, 2018. https://scholarworks.waldenu.edu/dissertations/5872.
Der volle Inhalt der QuelleMunkhammar, Tobias. „Ground Reaction Force Prediction during Weighted Leg Press and Weighted Squat in a Flywheel Exercise Device“. Thesis, KTH, Skolan för teknik och hälsa (STH), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211194.
Der volle Inhalt der QuelleHidegová, Simona. „Validace multikanálové bioimpedance cév za použití synchronizované cévní sonografie“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442505.
Der volle Inhalt der QuelleAlexander, K. L. „Design for validation of medical devices and equipment“. Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595422.
Der volle Inhalt der QuelleAndriani, Rudy Thomas. „Design and Validation of Medical Devices for Photothermally Augmented Treatments“. Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/50503.
Der volle Inhalt der QuelleMaster of Science
Cruz, Vítor Pedro Tedim Ramos. „New tools for cognitive and motor rehabilitation: development and clinical validation“. Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/15775.
Der volle Inhalt der QuelleNervous system disorders are associated with cognitive and motor deficits, and are responsible for the highest disability rates and global burden of disease. Their recovery paths are vulnerable and dependent on the effective combination of plastic brain tissue properties, with complex, lengthy and expensive neurorehabilitation programs. This work explores two lines of research, envisioning sustainable solutions to improve treatment of cognitive and motor deficits. Both projects were developed in parallel and shared a new sensible approach, where low-cost technologies were integrated with common clinical operative procedures. The aim was to achieve more intensive treatments under specialized monitoring, improve clinical decision-making and increase access to healthcare. The first project (articles I – III) concerned the development and evaluation of a web-based cognitive training platform (COGWEB), suitable for intensive use, either at home or at institutions, and across a wide spectrum of ages and diseases that impair cognitive functioning. It was tested for usability in a memory clinic setting and implemented in a collaborative network, comprising 41 centers and 60 professionals. An adherence and intensity study revealed a compliance of 82.8% at six months and an average of six hours/week of continued online cognitive training activities. The second project (articles IV – VI) was designed to create and validate an intelligent rehabilitation device to administer proprioceptive stimuli on the hemiparetic side of stroke patients while performing ambulatory movement characterization (SWORD). Targeted vibratory stimulation was found to be well tolerated and an automatic motor characterization system retrieved results comparable to the first items of the Wolf Motor Function Test. The global system was tested in a randomized placebo controlled trial to assess its impact on a common motor rehabilitation task in a relevant clinical environment (early post-stroke). The number of correct movements on a hand-to-mouth task was increased by an average of 7.2/minute while the probability to perform an error decreased from 1:3 to 1:9. Neurorehabilitation and neuroplasticity are shifting to more neuroscience driven approaches. Simultaneously, their final utility for patients and society is largely dependent on the development of more effective technologies that facilitate the dissemination of knowledge produced during the process. The results attained through this work represent a step forward in that direction. Their impact on the quality of rehabilitation services and public health is discussed according to clinical, technological and organizational perspectives. Such a process of thinking and oriented speculation has led to the debate of subsequent hypotheses, already being explored in novel research paths.
As doenças do sistema nervoso estão associadas a défices cognitivos e motores, sendo responsáveis pelas maiores taxas de incapacidade e impacto global. A sua recuperação é difícil e depende em simultâneo da plasticidade cerebral e de programas de neurorreabilitação complexos, longos e dispendiosos. Este trabalho explora duas linhas de investigação, que visam soluções sustentáveis para melhoria do tratamento de défices cognitivos e motores. Ambos os projetos foram desenvolvidos em paralelo, partilhando uma abordagem assisada onde se combinam tecnologias de baixo custo com processos clínicos comuns. O objetivo era obter tratamentos mais intensivos e supervisionados, melhorar o processo de decisão clínica e eliminar barreiras no acesso aos cuidados de saúde. O primeiro projeto (artigos I – III) permitiu o desenvolvimento e avaliação de uma plataforma online para treino cognitivo (COGWEB), adequada para uso intensivo, em casa ou instituições, e num largo espectro de idades e doenças com envolvimento das funções cognitivas. A sua usabilidade foi testada numa consulta de memória, sendo de seguida implementada numa rede colaborativa que envolveu 41 centros e 60 profissionais. A taxa de adesão aos planos de treino cognitivo online foi 82,8% aos 6 meses, verificando-se uma intensidade média de 6 horas/semana. O segundo projeto (artigos IV – VI) originou a construção e validação de um dispositivo de reabilitação inteligente para doentes com acidente vascular cerebral (AVC). Permite estímulos proprioceptivos no lado hemiparético, enquanto caracteriza o movimento tridimensional em ambulatório (SWORD). A estimulação vibratória foi bem tolerada pelos doentes e um sistema automático de caracterização motora revelou resultados comparáveis aos de uma escala utilizada frequentemente na prática clínica. O sistema integrado foi testado num ensaio clínico randomizado e controlado com placebo para avaliação do impacto numa tarefa de reabilitação motora na fase subaguda após AVC. O número de movimentos correctos numa tarefa mão-boca aumentou em média 7,2/minuto, enquanto a probabilidade de ocorrência de erro se reduziu de 1:3 para 1:9. A neurorreabilitação e a neuroplasticidade têm incorporado abordagens de múltiplos domínios das neurociências. Em simultâneo, a sua utilidade para os doentes e sociedade está dependente do desenvolvimento de tecnologias mais eficazes que facilitem também a disseminação do conhecimento entretanto produzido. Os resultados obtidos através do presente trabalho representam um passo adicional nessa direcção. O seu impacto na qualidade dos serviços de reabilitação e saúde pública são discutidos segundo perspectivas clínica, tecnológica e organizacional. Este processo de reflexão foi gerador de novas hipóteses, algumas já em exploração através de linhas de investigação específicas.
Hsieh, Uiong-Zoei, und 謝泳叡. „The Verification and Validation of Software Contained in the Medical Devices: The Example of Cephalometric Analysis System“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/38902362699493364479.
Der volle Inhalt der Quelle南台科技大學
電機工程系
96
The failures of medical device might cause hazard to patients or operators. So, the software contained in a medical device should be verified and validated to insure the safety and the quality. Software engineering practices, risk analysis and management, and configuration management should be integrated in the study of software verification and validation (SV&V). Those approaches are acceptable by the FDA for the SV&V. In this work, the V-model was introduced in the software development process for the quality management of software development. The fault tree analysis (FTA) techniques were applied in the procedure of risk analysis and management for the SV&V. All of the procedures should be integrated in the so called “configuration management”. The procedures of SV&V for the developing “Cephalometric Analysis system” (CEPH) and its related works, such as software developed model, requirements specification, design specification, software test, SV&V and risk managements are also presented in the study. Finally, the documents developed in this study are hoped that to be agreeable with FDA’s conditions for the content of premarket submissions of software contained in a medical device.
Bücher zum Thema "Medical device validation"
Vercimak, Sutton Charmaine, Hrsg. Validation for medical device and diagnostic manufacturers. 2. Aufl. Buffalo Grove, Ill: Interpharm Press, 1998.
Den vollen Inhalt der Quelle findenMedical device software verification, validation and compliance. Norwood, Mass: Artech House, 2011.
Den vollen Inhalt der Quelle findenVercimak, Sutton Charmaine, Hrsg. Validation for medical device and diagnostic manufacturers. 2. Aufl. Buffalo Grove, IL: Interpharm Press, 1994.
Den vollen Inhalt der Quelle findenHaider, Syed Imtiaz. Validation standard operating procedures: A step-by-step guide for achieving compliance in the pharmaceutical, medical device, and biotech industries. 2. Aufl. Boca Raton: Taylor & Francis, 2006.
Den vollen Inhalt der Quelle findenDills, David. Technical guide: Conducting effective medical device validations. Royal Palm Beach, FL: Institute of Validation Technology, 1999.
Den vollen Inhalt der Quelle findenDills, David. Technical guide: Conducting effective medical device validations. Royal Palm Beach, FL: Institute of Validation Technology, 1999.
Den vollen Inhalt der Quelle findenLopez, Orlando. Pharmaceutical and Medical Devices Manufacturing Computer Systems Validation. Boca Raton : Taylor & Francis, [2018]: Productivity Press, 2018. http://dx.doi.org/10.4324/9781315174617.
Der volle Inhalt der QuelleThe Medical Device Validation Handbook, Second Edition. Regulatory Affairs Professionals Society (RAPS), 2018.
Den vollen Inhalt der Quelle findenPharmaceutical and Medical Device Validation by Experimental Design. Informa Healthcare, 2007.
Den vollen Inhalt der Quelle findenTorbeck, Lynn D., Hrsg. Pharmaceutical and Medical Device Validation by Experimental Design. CRC Press, 2007. http://dx.doi.org/10.3109/9781420055702.
Der volle Inhalt der QuelleBuchteile zum Thema "Medical device validation"
Sivakumar, M. S., Valentine Casey, Fergal McCaffery und Gerry Coleman. „Improving Verification & Validation in the Medical Device Domain“. In Systems, Software and Service Process Improvement, 61–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22206-1_6.
Der volle Inhalt der QuelleBrewer, Rebecca. „Cleaning Validation for the Pharmaceutical, Biopharmaceutical, Cosmetic, Nutraceutical, Medical Device and Diagnostic Industries“. In Handbook of Validation in Pharmaceutical Processes, 711–47. 4. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003163138-45.
Der volle Inhalt der QuelleSchönberger, Marius, und Tatjana Vasiljeva. „How Computer System Validation Contributes to Performance Improvements for Medical Device Manufactures: The Case of Latvian SME“. In Lecture Notes in Networks and Systems, 595–610. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44610-9_58.
Der volle Inhalt der QuelleLeucker, Martin, Malte Schmitz und Danilo à Tellinghusen. „Runtime Verification for Interconnected Medical Devices“. In Leveraging Applications of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications, 380–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47169-3_29.
Der volle Inhalt der QuelleLeucker, Martin. „Challenges for the Dynamic Interconnection of Medical Devices“. In Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and Applications, 387–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45231-8_29.
Der volle Inhalt der QuelleGrosu, Radu, Elizabeth Cherry, Edmund M. Clarke, Rance Cleaveland, Sanjay Dixit, Flavio H. Fenton, Sicun Gao et al. „Compositional, Approximate, and Quantitative Reasoning for Medical Cyber-Physical Systems with Application to Patient-Specific Cardiac Dynamics and Devices“. In Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and Applications, 356–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45231-8_26.
Der volle Inhalt der QuelleOgrodnik, Peter J. „Evaluation (Validation and Verification)“. In Medical Device Design, 201–53. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-391942-7.00009-x.
Der volle Inhalt der QuelleOgrodnik, Peter. „Evaluation (validation and verification)“. In Medical Device Design, 317–75. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-814962-1.00010-7.
Der volle Inhalt der Quelle„Preventing Recalls during Production Validation“. In Preventing Medical Device Recalls, 98–109. CRC Press, 2014. http://dx.doi.org/10.1201/b17210-11.
Der volle Inhalt der QuelleEagles, Sherman. „Software Verification and Validation“. In Handbook of Medical Device Design, 601–27. CRC Press, 2019. http://dx.doi.org/10.1201/9780429285141-24.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Medical device validation"
Jiang, Zhihao, Miroslav Pajic, Allison Connolly, Sanjay Dixit und Rahul Mangharam. „A platform for implantable medical device validation“. In Wireless Health 2010. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1921081.1921115.
Der volle Inhalt der QuellePajic, Miroslav, Zhihao Jiang, Allison Connolly, Sanjay Dixit und Rahul Mangharam. „A platform for implantable medical device validation“. In the 9th ACM/IEEE International Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1791212.1791284.
Der volle Inhalt der QuelleZhang, Bolun, Daniel Farley, Heidi-Lynn Ploeg und Michael Zinn. „Validation of Feedback Control Approach for an Implantable Limb Lengthening Device“. In 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3456.
Der volle Inhalt der QuelleBarbosa, Paulo E. S., Misael Morais, Katia Galdino, Melquisedec Andrade, Luis Gomes, Filipe Moutinho und Jorge C. A. de Figueiredo. „Towards medical device behavioural validation using Petri nets“. In 2013 IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS). IEEE, 2013. http://dx.doi.org/10.1109/cbms.2013.6627756.
Der volle Inhalt der QuelleTradewell, Michael, Steve Morin und Kristin Chrouser. „Design and Validation of an Organizational Device for Endourological Surgery“. In 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6839.
Der volle Inhalt der QuelleRavizza, Alice, Federico Sternini, Alice Giannini und Filippo Molinari. „Methods for Preclinical Validation of Software as a Medical Device“. In 13th International Conference on Health Informatics. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0009155406480655.
Der volle Inhalt der QuelleRajaram, Hamsini Ketheswarasarma. „Taxonomy Based Testing Using SW91, a Medical Device Software Defect Taxonomy“. In 2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 2018. http://dx.doi.org/10.1109/icst.2018.00051.
Der volle Inhalt der QuelleWang, X., C. Di Natali, M. Beccani, M. Kern, P. Valdastri und M. Rentschler. „Novel medical wired palpation device: A validation study of material properties“. In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6627102.
Der volle Inhalt der QuelleAnderson, Jeff R., Silvia Ferrati, Chistof Karmonik und Alessandro Grattoni. „Functional validation of an implantable medical dosing device by MRI at 3T“. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944091.
Der volle Inhalt der QuelleEtheridge, Michael, Harishankar Natesan, Radek Lopusnik und Adam Cates. „Development and Validation of Numerical Model Simulation for RF Ablation Using the Isolator Synergy Clamp“. In 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6949.
Der volle Inhalt der Quelle