Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Mechanical properties“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Mechanical properties" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Mechanical properties"
Sakamoto, Makoto, Kenji Sato, Koichi Kobayashi, Jun Sakai, Yuji Tanabe und Toshiaki Hara. „Nanoindentation Analysis of Mechanical Properties of Cortical Bone(Bone Mechanics)“. Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 43–44. http://dx.doi.org/10.1299/jsmeapbio.2004.1.43.
Der volle Inhalt der QuelleGotoh, Masaru, Ken Suzuki und Hideo Miura. „OS12-4 Control of Mechanical Properties of Micro Electroplated Copper Interconnections(Mechanical properties of nano- and micro-materials-1,OS12 Mechanical properties of nano- and micro-materials,MICRO AND NANO MECHANICS)“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 186. http://dx.doi.org/10.1299/jsmeatem.2015.14.186.
Der volle Inhalt der QuelleDunca, J. „Mechanical properties of cereal stem“. Research in Agricultural Engineering 54, No. 2 (24.06.2008): 91–96. http://dx.doi.org/10.17221/5/2008-rae.
Der volle Inhalt der QuelleArak, Margus, Kaarel Soots, Marge Starast und Jüri Olt. „Mechanical properties of blueberry stems“. Research in Agricultural Engineering 64, No. 4 (31.12.2018): 202–8. http://dx.doi.org/10.17221/90/2017-rae.
Der volle Inhalt der QuelleKiselov, V. S. „Mechanical properties of biomorphous ceramics“. Semiconductor Physics Quantum Electronics and Optoelectronics 15, Nr. 4 (12.12.2012): 386–92. http://dx.doi.org/10.15407/spqeo15.04.386.
Der volle Inhalt der QuelleNamazu, Takahiro. „OS12-1 MEMS and Nanotechnology for Experimental Mechanics(invited,Mechanical properties of nano- and micro-materials-1,OS12 Mechanical properties of nano- and micro-materials,MICRO AND NANO MECHANICS)“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 183. http://dx.doi.org/10.1299/jsmeatem.2015.14.183.
Der volle Inhalt der QuelleKubík, Ľ., und V. Kažimírová. „Mechanical properties of pellets in compression“. Research in Agricultural Engineering 61, Special Issue (02.06.2016): S1—S8. http://dx.doi.org/10.17221/17/2015-rae.
Der volle Inhalt der QuelleHan, Zhong Kai, Ming Liu und Yin Jun Gao. „Mechanical Properties of Stone Masonry Mechanical Properties“. Applied Mechanics and Materials 507 (Januar 2014): 277–80. http://dx.doi.org/10.4028/www.scientific.net/amm.507.277.
Der volle Inhalt der QuelleSkalický, J. „Research of sugar-beet tubers mechanical properties“. Research in Agricultural Engineering 49, No. 3 (08.02.2012): 80–84. http://dx.doi.org/10.17221/4956-rae.
Der volle Inhalt der QuelleWiwatwongwana, F., und S. Chaijit. „Mechanical Properties Analysis of Gelatin/Carboxymethylcellulose Scaffolds“. International Journal of Materials, Mechanics and Manufacturing 7, Nr. 3 (Juni 2019): 138–43. http://dx.doi.org/10.18178/ijmmm.2019.7.3.447.
Der volle Inhalt der QuelleDissertationen zum Thema "Mechanical properties"
Conca, Luca. „Mechanical properties of polymer glasses : Mechanical properties of polymer glasses“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1050/document.
Der volle Inhalt der QuelleThis manuscript presents recent extensions to the PFVD model, based on the heterogeneity of theh dynamics of glassy polymers at the scale of a few nanometers et solved by 3D numerical simulation, which aim at providing a unified physical description of the mechanical and dynamical properties of glassy polymers during plastic deformation. Three main topics are treated: Plasticization. Under applied deformation, polymers undergo yield at strains of a few percent and stresses of some 10 MPa.We propose that the elastic energy stored at the scale of dynamical heterogeneities accelerates local dynamics. We observe yield stresses of a few 10 MPa are obtained at a few percent of deformation and that plastification is due to a relatively small amount of local yields. It has been observed that dynamics becomes faster and more homogeneous close to yield and that the average mobility attains a stationary value, linear with the strain rate. We propose that stress-induced acceleration of the dynamics enhances the diffusion of monomers from slow domains to fast ones (facilitation mechanism), accelerating local dynamics. This allows for obtaining the homogeneisation of the dynamics, with the same features observed during experiments. Strain-hardening, in highly entangled and cross-linked polymers. At large strain, stress increases with increasing strain, with a characteristic slope (hardening modulus) of order 10 – 100 MPa well below the glass transition. Analogously to a recent theory, we propose that local deformation orients monomers in the drawing direction and slows dows the dynamics, as a consequence of the intensification of local interactions. The hardening moduli mesured, the effect of reticulation and of strain rate are comparable with experimental data. In addition, strain-hardening is found to have a stabilizing effect over strain localization and shear banding
Guillou, Lionel. „Cell Mechanics : Mechanical Properties and Membrane Rupture Criteria“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX041/document.
Der volle Inhalt der QuelleAtherosclerosis is a chronic disease of the arteries that is a major cause of heart attacks and strokes. This thesis aims to provide novel insight into this disease by looking at specific factors involved in its development from a mechanical standpoint.Two important cell types involved in the development and progression of atherosclerosis are adherent endothelial cells and non-adherent leukocytes (white blood cells). We developed two devices that are able to measure the mechanical properties of both of these cell types. The first one, termed “profile microindentation”, uses micropipettes and microindenters to indent the cell, while the second one uses microfluidics to submit cells to an extensional stress.Further, we wondered if mechanics could help us understand when deformations undergone by cells, or stresses exerted on them, could become harmful.As a matter of fact, when atherosclerotic plaques occlude too much of the blood flow, the most common treatment consists of reopening the vessel with a balloon and keeping it open with a tubular wired mesh called a stent. This procedure exerts considerable compressive stress on the endothelium and is known to be associated with extensive endothelial damage. Hence, we seek to find a physical criterion that is predictive of endothelial cell membrane rupture under compression and to compare this to the stress exerted on the endothelium during the stenting procedure, to see if endothelial damage could potentially be avoided.Similarly, we seek to obtain a physical criterion that is predictive of leukocyte membrane rupture. We then compare and contrast the maximum possible deformations of leukocytes depending on whether those deformations are passive (such as when going through the microvasculature) or active (such as when leukocytes traverse the endothelial barrier)
Miao, Yuyang. „Mechanics of textile composites : from geometry to mechanical properties /“. Search for this dissertation online, 2005. http://wwwlib.umi.com/cr/ksu/main.
Der volle Inhalt der QuelleLoveless, Thomas A. „Mechanical Properties of Kenaf Composites Using Dynamic Mechanical Analysis“. DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4310.
Der volle Inhalt der QuelleOzdemir, Gokhan. „Mechanical Properties Of Cfrp Anchorages“. Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605890/index.pdf.
Der volle Inhalt der QuelleDimitriu, Radu. „Complex mechanical properties of steel“. Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/218319.
Der volle Inhalt der QuelleDrodge, Daniel Ryan. „Mechanical properties of energetic composites“. Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/265501.
Der volle Inhalt der QuelleRains, Jeffrey K. „Mechanical properties of tracheal cartilage“. Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/27994.
Der volle Inhalt der QuelleApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Lintzén, Nina. „Mechanical properties of artificial snow“. Licentiate thesis, Luleå tekniska universitet, Geoteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-16798.
Der volle Inhalt der QuelleGodkänd; 2013; 20131002 (ninlin); Tillkännagivande licentiatseminarium 2013-10-23 Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Nina Lintzén Ämne: Geoteknik/Soil Mechanics and Foundation Engineering Uppsats: Mechanical Properties of Artificial Snow Examinator: Professor Sven Knutsson, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Tekn. lic. Lars Vikström, LKAB, Luleå Tid: Fredag den 15 november 2013 kl 10.00 Plats: F1031, Luleå tekniska universitet
Root, Samuel E. „Mechanical Properties of Semiconducting Polymers“. Thesis, University of California, San Diego, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10745535.
Der volle Inhalt der QuelleMechanical softness and deformability underpin most of the advantages offered by semiconducting polymers. A detailed understanding of the mechanical properties of these materials is crucial for the design and manufacturing of robust, thin-film devices such as solar cells, displays, and sensors. The mechanical behavior of polymers is a complex function of many interrelated factors that span multiple scales, ranging from molecular structure, to microstructural morphology, and device geometry. This thesis builds a comprehensive understanding of the thermomechanical properties of polymeric semiconductors through the development and experimental-validation of computational methods for mechanical simulation. A predictive computational methodology is designed and encapsulated into open-sourced software for automating molecular dynamics simulations on modern supercomputing hardware. These simulations are used to explore the role of molecular structure/weight and processing conditions on solid-state morphology and thermomechanical behavior. Experimental characterization is employed to test these predictions—including the development of simple, new techniques for rigorously characterizing thermal transitions and fracture mechanics of thin films.
Bücher zum Thema "Mechanical properties"
Kambic, HE, und AT Yokobori, Hrsg. Biomaterials' Mechanical Properties. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1994. http://dx.doi.org/10.1520/stp1173-eb.
Der volle Inhalt der QuelleE, Kambic Helen, Yokobori A. Toshimitsu 1951- und American Society for Testing and Materials., Hrsg. Biomaterials' mechanical properties. Philadelphia, PA: ASTM, 1994.
Den vollen Inhalt der Quelle findenJanssen, Jules J. A. Mechanical properties of bamboo. Dordrecht: Kluwer Academic Publishers, 1991.
Den vollen Inhalt der Quelle findenPelleg, Joshua. Mechanical Properties of Nanomaterials. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74652-0.
Der volle Inhalt der QuellePelleg, Joshua. Mechanical Properties of Materials. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4342-7.
Der volle Inhalt der QuellePelleg, Joshua. Mechanical Properties of Ceramics. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04492-7.
Der volle Inhalt der QuelleJanssen, Jules J. A. Mechanical Properties of Bamboo. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3236-7.
Der volle Inhalt der QuellePelleg, Joshua. Mechanical Properties of Materials. Dordrecht: Springer Netherlands, 2013.
Den vollen Inhalt der Quelle findenJanssen, Jules J. A. Mechanical Properties of Bamboo. Dordrecht: Springer Netherlands, 1991.
Den vollen Inhalt der Quelle findenWachtman, J. B. Mechanical properties of ceramics. 2. Aufl. Hoboken, N.J: Wiley, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Mechanical properties"
Perego, Gabriele, und Gian Domenico Cella. „Mechanical Properties“. In Poly(Lactic Acid), 141–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch11.
Der volle Inhalt der QuelleLü, L., und M. O. Lai. „Mechanical Properties“. In Mechanical Alloying, 189–201. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5509-4_7.
Der volle Inhalt der QuelleLacroix, Damien, und Josep A. Planell. „Mechanical Properties“. In Biomedical Materials, 303–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_8.
Der volle Inhalt der QuelleWesolowski, Robert A., Anthony P. Wesolowski und Roumiana S. Petrova. „Mechanical Properties“. In The World of Materials, 39–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-17847-5_6.
Der volle Inhalt der QuelleBenboudjema, Farid, Jérôme Carette, Brice Delsaute, Tulio Honorio de Faria, Agnieszka Knoppik, Laurie Lacarrière, Anne Neiry de Mendonça Lopes, Pierre Rossi und Stéphanie Staquet. „Mechanical Properties“. In Thermal Cracking of Massive Concrete Structures, 69–114. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76617-1_4.
Der volle Inhalt der QuelleDesnerck, Pieter, Veerle Boel, Bart Craeye und Petra Van Itterbeeck. „Mechanical Properties“. In Mechanical Properties of Self-Compacting Concrete, 15–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03245-0_2.
Der volle Inhalt der QuelleYoung, Robert J., und Peter A. Lovell. „Mechanical properties“. In Introduction to Polymers, 310–428. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3176-4_5.
Der volle Inhalt der QuelleFeuerbacher, M., K. Urban, Ulrich Messerschmidt, Martin Bartsch, Bert Geyer, Lars Ledig, Christoph Rudhart et al. „Mechanical Properties“. In Quasicrystals, 431–569. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606572.ch5.
Der volle Inhalt der QuelleRice, Roy. „Mechanical Properties“. In Cellular Ceramics, 289–312. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606696.ch4a.
Der volle Inhalt der QuelleHack, Robert. „Mechanical Properties“. In Encyclopedia of Earth Sciences Series, 1–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-12127-7_197-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Mechanical properties"
Cleland, A. N. „Mechanical quantum resonators“. In ELECTRONIC PROPERTIES OF NOVEL NANOSTRUCTURES: XIX International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2005. http://dx.doi.org/10.1063/1.2103895.
Der volle Inhalt der QuelleBaum, Gary A. „Subfracture Mechanical Properties“. In Products of Papermaking, herausgegeben von C. F. Baker. Fundamental Research Committee (FRC), Manchester, 1993. http://dx.doi.org/10.15376/frc.1993.1.1.
Der volle Inhalt der QuelleWilliamson, David. „Mechanical Properties of PBS9501“. In SHOCK COMPRESSION OF CONDENSED MATTER - 2003: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2004. http://dx.doi.org/10.1063/1.1780362.
Der volle Inhalt der QuellePolyakov, Maxim, und Peter Schweitzer. „Mechanical properties of particles“. In 23rd International Spin Physics Symposium. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.346.0066.
Der volle Inhalt der QuelleKaplan-Ashiri, I. „Mechanical Properties of Individual WS2 Nanotubes“. In ELECTRIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES: XVII International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2004. http://dx.doi.org/10.1063/1.1812096.
Der volle Inhalt der QuelleNiesz, K. „Mechanical cut of carbon nanotubes“. In STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514083.
Der volle Inhalt der QuelleNajidha, S., P. Predeep, N. S. Saxena, P. Predeep, S. Prasanth und A. S. Prasad. „Dynamic Mechanical Properties of Natural Rubber∕Polyaniline Composites“. In THERMOPHYSICAL PROPERTIES OF MATERIALS AND DEVICES: IVth National Conference on Thermophysical Properties - NCTP'07. AIP, 2008. http://dx.doi.org/10.1063/1.2927564.
Der volle Inhalt der QuelleDixit, Manasvi, Vinodini Shaktawat, Kananbala Sharma, Narendra S. Saxena, Thaneshwar P. Sharma, P. Predeep, S. Prasanth und A. S. Prasad. „Mechanical Characterization of Polymethyl Methacrylate and Polycarbonate Blends“. In THERMOPHYSICAL PROPERTIES OF MATERIALS AND DEVICES: IVth National Conference on Thermophysical Properties - NCTP'07. AIP, 2008. http://dx.doi.org/10.1063/1.2927574.
Der volle Inhalt der QuelleSaxena, Narendra S., Neeraj Jain, P. Predeep, S. Prasanth und A. S. Prasad. „Thermal and Mechanical Characterization of Aniline-Formaldehyde Copolymer“. In THERMOPHYSICAL PROPERTIES OF MATERIALS AND DEVICES: IVth National Conference on Thermophysical Properties - NCTP'07. AIP, 2008. http://dx.doi.org/10.1063/1.2927593.
Der volle Inhalt der Quelle„Mechanical Properties of Plain AAC Material“. In SP-226: Autoclaved Aerated Concrete-Properties and Structural Design. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14388.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Mechanical properties"
Caskey, Jr, G. R. Mechanical Properties of Uranium Alloys. Office of Scientific and Technical Information (OSTI), Oktober 2002. http://dx.doi.org/10.2172/804673.
Der volle Inhalt der QuelleLuecke, William E., J. David McColskey, Christopher N. McCowan, Stephen W. Banovic, Richard J. Fields, Timothy Foecke, Thomas A. Siewert und Frank W. Gayle. Mechanical properties of structural steel. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ncstar.1-3d.
Der volle Inhalt der QuelleSiegel, R. W., und G. E. Fougere. Mechanical properties of nanophase materials. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10110297.
Der volle Inhalt der QuelleSolem, J. C., und J. K. Dienes. Mechanical Properties of Cellular Materials. Office of Scientific and Technical Information (OSTI), Juli 1999. http://dx.doi.org/10.2172/759178.
Der volle Inhalt der QuelleWallace, J. S., E. R. Jr Fuller und S. W. Freiman. Mechanical properties of aluminum nitride substrates. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5903.
Der volle Inhalt der QuelleMcEachen, G. W. Carbon syntactic foam mechanical properties testing. Office of Scientific and Technical Information (OSTI), Januar 1998. http://dx.doi.org/10.2172/654103.
Der volle Inhalt der QuelleNeuman, A. D., M. J. Blacic, M. Platero, R. S. Romero, K. J. McClellan und J. J. Petrovic. Mechanical properties of melt-derived erbium oxide. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/296753.
Der volle Inhalt der QuelleKlueh, R. L., D. J. Alexander und M. Rieth. Mechanical properties of irradiated 9Cr-2WVTa steel. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/330624.
Der volle Inhalt der QuelleMcCoy, H. E., und J. F. King. Mechanical properties of Inconel 617 and 618. Office of Scientific and Technical Information (OSTI), Februar 1985. http://dx.doi.org/10.2172/711763.
Der volle Inhalt der QuelleSwitzner, Nathan T. Stainless Steel Microstructure and Mechanical Properties Evaluation. Office of Scientific and Technical Information (OSTI), Juni 2010. http://dx.doi.org/10.2172/1129927.
Der volle Inhalt der Quelle